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Upcoming material affects processing

Angele et al. (2015)
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Lexical frequency of the upcoming masked word affects processing

Hypothesis: Effect is due to uncertainty over continuations

Problem: Uncertainty is expensive to calculate
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Entropy measures uncertainty

Shannon (1948)
H(X) def= −

∑
x∈X

P(x)log P(x) (1)

Roark et al. (2009) distinguishes two kinds of entropy
(over words and preterminals)

LexH(w1..i−1)
def
= −

∑
wi∈V

PG(wi | w1..i−1)log PG(wi | w1..i−1) (2)

SynH(w1..i−1)
def
= −

∑
pi∈G

PG(pi | w1..i−1)log PG(pi | w1..i−1) (3)
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Entropy measures uncertainty

Roark et al. (2009) showed

• SynH predicts self-paced reading times
• LexH is not predictive of SPR times

(No Angele et al., 2015, effect)

But

• Small training corpus (V is poor)
• Small test corpus:

∼ 200 sentences, ∼ 4000 words, 23 subjects
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Test data in this work

Natural Stories self-paced reading corpus (Futrell et al., in prep)

• 181 subjects
• 10 narrative texts
• 485 sentences (10256 words)
• Each text followed by 6 comprehension questions
• Events removed if <100 ms or >3000 ms

Parsed using Roark (2001) parser

Fitted with lmer
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Spaces were masked

-------------------------
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Spaces were masked
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Spaces were masked

------------------- fish.
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Syntactic entropy predicts RTs

Predictor β̂ σ̂

Syntactic H 4.53∗ 0.54
Lexical H −1.05 0.41

Replication of Roark et al. (2009)

But Angele et al. (2015) found a lexical frequency effect
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Can we make LexH more tractable?

SG(wi,w1..i−1)
def
= −log PG(wi | w1..i−1) (4)

LexHG(w1..i−1)
def
=

∑
wi∈V

−PG(wi | w1..i−1) log PG(wi | w1..i−1) (5)

=
∑
wi∈V

PG(wi | w1..i−1) SG(wi,w1..i−1) (6)

= E[SG(wi,w1..i−1)] (7)

We can use a corpus instead of explicitly computing the expectation
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Entropy gives mean surprisal
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Surprisal approximates entropy in the aggregate
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Surprisal approximates entropy in the aggregate

Ex: The boy annoyed the fish.
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Surprisal approximates entropy in the aggregate

We can treat large corpora as our samplers.
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Possible entropy approximations

We can try:

• Future Roark surprisal
(same distribution as SynH)

• Future 5-gram Surprisal
(similar to what Angele et al., observed)

• Future categorial grammar surprisal
(tests how specific syntactic prediction is)
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Uncertainty over both words and syntax

Predictor β̂ σ̂

Syntactic H 4.62∗ 0.53
Future Roark Surprisal 0.33 0.40
Future N-gram Surprisal 4.05∗ 0.58
Future Categorial Grammar Surprisal 4.10∗ 0.74
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Why does this pre-slowing occur?

• Better encoding of wi to help with wi+1

• A kind of Uniform Information Density (UID; Jaeger, 2010)
• Optimizes per-millisecond informativity
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Conclusions

• Uncertainty about upcoming words slows processing
• That influence can be detected prior to any expectation violation
• Future surprisal can efficiently approximate that uncertainty
• Syntactic uncertainty is fine-grained
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Thanks! Questions?

Thanks to:

• The reviewers for their very helpful comments
• National Science Foundation (DGE-1343012)

van Schijndel, Schuler Approximate Entropy July 29, 2017 18 / 18


