HIERARCHIC SYNTAX IMPROVES READING TIME PREDICTION

Marten van Schijndel and William Schuler Department of Linguistics The Ohio State University June 3, 2015

Previous studies have debated whether humans use hierarchic syntax

Previous studies have debated whether humans use hierarchic syntax

Previous studies have debated whether humans use hierarchic syntax

But standard baseline predictors may be deficient

VAN SCHIJNDEL AND SCHULER

This work shows that:

This work shows that: Baselines can be greatly improved (accumulation) This work shows that: Baselines can be greatly improved (accumulation)

Hierarchic syntax is still predictive over stronger baseline

This work shows that: Baselines can be greatly improved (accumulation)

Hierarchic syntax is still predictive over stronger baseline

Hierarchic syntax not improved by accumulation

- This work shows that: Baselines can be greatly improved (accumulation)
- Hierarchic syntax is still predictive over stronger baseline
- Hierarchic syntax not improved by accumulation
- Long distance dependencies independently improve model

VAN SCHIJNDEL AND SCHULER

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

The red apple that the girl ate ...
$$W_1$$
 W_2 W_3 W_4 W_5 W_6

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

VAN SCHIJNDEL AND SCHULER

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

HIERARCHIC SYNTAX IN READING?

Frank & Bod (2011)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

Outcome:

```
PSG < ESN + PSG
```

```
ESN = ESN + PSG
```

Test POS Predictors:

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

VAN SCHIJNDEL AND SCHULER

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

Outcome:

```
PSG < ESN + PSG Sequential helps over hierarchic
ESN = ESN + PSG
```

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

Baseline:

- Sentence Position
- Word length
- N-grams (Unigram, bigram)

Outcome:

```
PSG < ESN + PSG
```

ESN = ESN + PSG Hierarchic doesn't help over sequential

Test POS Predictors:

- Echo State Network (ESN)
- Phrase Structure Grammar (PSG)

VAN SCHIJNDEL AND SCHULER

Replicated Frank & Bod (2011): PSG < ESN + PSG ESN = ESN + PSG

VAN SCHIJNDEL AND SCHULER

Replicated Frank & Bod (2011): PSG < ESN + PSG ESN = ESN + PSG

Better *n*-gram baseline (more data) changes result: $PSG \equiv ESN + PSG$ ESN = ESN + PSG

Replicated Frank & Bod (2011): PSG < ESN + PSG

ESN = ESN + PSG

Better *n*-gram baseline (more data) changes result: PSG = ESN + PSG Sequential doesn't help over hierarchic ESN = ESN + PSG

Replicated Frank & Bod (2011): PSG < ESN + PSG FSN = FSN + PSG

Better *n*-gram baseline (more data) changes result: $PSG \equiv ESN + PSG$ Sequential doesn't help over hierarchic ESN = ESN + PSG

Also: lexicalized syntax improves PSG fit

VAN SCHIJNDEL AND SCHULER

Previous reading time studies:

• Unigrams/Bigrams/Trigrams Trained on WSJ, Dundee, BNC Previous reading time studies:

- Unigrams/Bigrams/Trigrams Trained on WSJ, Dundee, BNC
- Only from region boundaries

• Fails to capture entire sequence;

VAN SCHIJNDEL AND SCHULER

- Fails to capture entire sequence;
- Conditions never generated;

- Fails to capture entire sequence;
- Conditions never generated;
- Probability of sequence is deficient

CUMULATIVE BIGRAM EXAMPLE

Reading time of *girl* after *red*:

VAN SCHIJNDEL AND SCHULER

CUMULATIVE BIGRAM EXAMPLE

Reading time of *girl* after *red*:

- Captures entire sequence;
- Well-formed sequence probability;
- Reflects processing that must be done by humans

VAN SCHIJNDEL AND SCHULER

Previous reading time studies:

- Unigrams/Bigrams/Trigrams
- Trained on WSJ, Dundee, BNC
- Only from region boundaries

Previous reading time studies:

- Unigrams/Bigrams/Trigrams
- Trained on WSJ, Dundee, BNC
- Only from region boundaries

This study:

- 5-grams (w/ backoff)
- Trained on Gigaword 4.0
- Cumulative and Non-cumulative

Dundee Corpus (Kennedy et al., 2003)

- 10 subjects
- 2,388 sentences
- 58,439 words
- 194,882 first pass durations
- 193,709 go-past durations

Exclusions:

- Unknown words (5 tokens)
- First and last of a line
- Regions larger than 4 words (track loss)

VAN SCHIJNDEL AND SCHULER

Fixed Effects

- Sentence Position
- Word length
- Region Length
- Preceding word fixated?

Random Effects

- Item/Subject Intercepts
- By Subject Slopes:
 - All Fixed Effects
 - N-grams (5-grams)
 - N-grams (Cumu-5-grams)

Fixed Effects

- Sentence Position
- Word length
- Region Length
- Preceding word fixated?

Random Effects

- Item/Subject Intercepts
- By Subject Slopes:
 - All Fixed Effects
 - N-grams (5-grams) \leftarrow
 - *N*-grams (Cumu-5-grams) \leftarrow

Log-likelihood

First Pass

VAN SCHIJNDEL AND SCHULER

VAN SCHIJNDEL AND SCHULER

FOLLOW-UP QUESTIONS

VAN SCHIJNDEL AND SCHULER

• Is hierarchic surprisal useful over the better baseline?

- Is hierarchic surprisal useful over the better baseline?
- If so, can it be similarly improved through accumulation?

- Is hierarchic surprisal useful over the better baseline?
- If so, can it be similarly improved through accumulation? van Schijndel & Schuler (2013) found it could over weaker baselines

Grammar:

Berkeley parser, WSJ, 5 split-merge cycles (Petrov & Klein 2007)

VAN SCHIJNDEL AND SCHULER

Fixed Effects

- Same as before
- N-grams (5-grams)
- *N*-grams (Cumu-5-grams)

Fixed Effects

- Same as before
- *N*-grams (5-grams)
- *N*-grams (Cumu-5-grams)

Random Effects

- Same as before
- By Subject Slopes:
 - Hierarchic surprisal
 - Cumu-Hierarchic surprisal

Fixed Effects

- Same as before
- *N*-grams (5-grams)
- *N*-grams (Cumu-5-grams)

Random Effects

- Same as before
- By Subject Slopes:
 - Hierarchic surprisal \leftarrow
 - Cumu-Hierarchic surprisal \leftarrow

VAN SCHIJNDEL AND SCHULER

• Suggests previous findings were due to weaker *n*-gram baseline

- Suggests previous findings were due to weaker *n*-gram baseline
- Suggests only local PCFG surprisal affects reading times

- Suggests previous findings were due to weaker *n*-gram baseline
- Suggests only local PCFG surprisal affects reading times

But... long-distance dependencies should affect reading times!

- Suggests previous findings were due to weaker *n*-gram baseline
- Suggests only local PCFG surprisal affects reading times

But... long-distance dependencies should affect reading times!

Let's try a PCFG that tracks long-distance deps

Nguyen et al. (2012)

VAN SCHIJNDEL AND SCHULER

Nguyen et al. (2012)

VAN SCHIJNDEL AND SCHULER

Baseline: Fixed Effects

• Same as before

Random Effects

- Same as before
- By Subject Slopes:
 - Hierarchic PTB surprisal
 - Hierarchic GCG surprisal

Baseline: Fixed Effects

• Same as before

Random Effects

- Same as before
- By Subject Slopes:
 - Hierarchic PTB surprisal \leftarrow
 - Hierarchic GCG surprisal \leftarrow

Log-likelihood

First Pass and Go-Past

VAN SCHIJNDEL AND SCHULER

Log-likelihood

First Pass and Go-Past

Both help independently

VAN SCHIJNDEL AND SCHULER

Hierarchic syntax predicts reading times over strong linear baseline

Hierarchic syntax predicts reading times over strong linear baseline

Long-distance dependencies do affect reading times

- Hierarchic syntax predicts reading times over strong linear baseline
- Long-distance dependencies do affect reading times
- Studies should use cumu-n-grams in their baselines

Compare to Echo State Networks

Compare to Echo State Networks

Test anticipatory accumulation

Thanks to:

- Stefan Frank
- Attendees of CUNY 2015
- National Science Foundation (DGE-1343012)

First Pass Evaluation (Log-Likelihood):

Base		
-1212399		
Base+N-gram	Base+Cumu- <i>n</i> -gram	
−1212396 (<i>p</i> < 0.05)	−1212392 (<i>p</i> < 0.01)	
Base+Both	Base+Both	
−1212387 (<i>p</i> < 0.01)	−1212387 (<i>p</i> < 0.01)	

Comparable with go-past durations

Go-Past Evaluation (Log-Likelihood):

Base			
-1261582			
Base+N-gram	Base+Cumu- <i>n</i> -gram		
—1261577 (p < 0.01)	−1261576 (<i>p</i> < 0.01)		
Base+Both	Base+Both		
−1261570 (<i>p</i> < 0.01)	−1261570 (<i>p</i> < 0.01)		

VAN SCHIJNDEL AND SCHULER

First Pass Evaluation (Log-Likelihood):

Base			
-1212260			
Base+Surp	Base+CumuSurp		
−1212253 (<i>p</i> < 0.01)	-1212259		
Base+Both	Base+Both		
-1212253	−1212253 (<i>p</i> < 0.01)		

Comparable with go-past durations

Go-Past Evaluation (Log-Likelihood):

Base			
-1261488			
Base+Surp	Base+CumuSurp		
−1261481 (<i>p</i> < 0.01)	—1261487		
Base+Both	Base+Both		
-1261481	−1261481 (<i>p</i> < 0.01)		

First Pass Evaluation (Log-Likelihood):

Base			
-1212242			
Base+PTB	Base+GCG		
−1212239 (<i>p</i> < 0.01)	−1212239 (<i>p</i> < 0.05)		
Base+Both	Base+Both		
−1212235 (<i>p</i> < 0.05)	−1212235 (<i>p</i> < 0.01)		

Both help independently

VAN SCHIJNDEL AND SCHULER

PCFG surprisal helps more with go-past durations

	Go-Past Evaluation (Log-Likelihood):				
	Base				
	—1261474				
	Base+PTB	Base+GCG			
-1261468 (<i>p</i> < 0.01) Base+Both		−1261470 (<i>p</i> < 0.01)			
		Base+Both			
	-1261465 (<i>p</i> < 0.01)	−1261465 (<i>p</i> < 0.01)			

Again, both help independently.

VAN SCHIJNDEL AND SCHULER

Dradictor	First Pass		Go-Past	
Predictor	coef	t value	coef	t value
sentpos	-2.47	-3.59	-2.82	-3.38
wlen	25.90	8.67	28.98	9.97
prevfix	-30.16	-7.81	-37.42	-11.49
<i>n</i> -gram	-2.39	-1.81	-6.70	-3.36
cumu- <i>n</i> -gram	—14.69	-7.36	—11.68	-5.01
rlen	-5.67	-1.31	-12.51	-2.59
surp-GCG	4.97	2.87	5.74	2.73
surp-PTB	4.20	3.23	4.85	3.29