

Introduction

Previous work has debated whether humans make use of hierarchic syntax when processing language [Frank and Bod, 2011]. The present work demonstrates:

- How to improve strong 5-gram language models,
- Hierarchic syntax improves reading time fit over a strong linear baseline,
- Hierarchic syntax is used during reading to resolve both local and long-distance structural dependencies.

Modeled Variables

Two reading time measures are computed:

The red apple that the girl ate ...

Given the fixation sequence: red, girl

Time from initial fixation of *girl* until:

- **First Pass**: first fixation before *red* or after *girl*.
- Go-Past: first fixation after *girl*.

The sequence from *red* to *girl* is called the *region*

Predictors evaluated against both reading time measures. Results are similar for both measures.

Predictors

The following predictors are tested:

	Duration Predictions		
Factors	R^{w4}_{w4}	R^{w6}_{w5}	
<i>n</i> -gram	$P(w_4 w_3,w_2)$	$\mathrm{P}(w_6 w_5,w_4)$	
cumu- <i>n</i> -gram	$P(w_4 w_3,w_2)$	$\mathrm{P}(w_6 w_5,w_4){\cdot}\mathrm{P}(w_5 w_4,w_3)$	
surp	$-\log \mathrm{P}(w_4 T_3)$	$-\log \mathrm{P}(w_6 T_5)$	
cumusurp	$-\log \mathrm{P}(w_4 T_3)$	$-\log\left[\mathrm{P}(w_6 T_5)\cdot\mathrm{P}(w_5 T_4) ight]$	
we word i			

 R_{wi}^{wj} : region from w_i to w_j (inclusive)

 T_i : set of syntactic structures that can span from w_1 to w_i

Software and Data

PCFG surprisal values were obtained using the van Schijndel et al., (2013) parser, which was trained on the WSJ corpus. N-gram probabilities were computed using KenLM over the 2.96 billion word Gigaword 4.0 corpus. Mixed models were fit using lme4 (1.1-7). Experiments were conducted over the Dundee corpus after filtering the first and last word of each sentence/line and all regions with more than 4 words.

Acknowledgements

Thanks to Stefan Frank for feedback and engaging discussion related to this work. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1343012. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Hierarchic syntax improves reading time prediction

Contact: vanschm@ling.osu.edu Marten van Schijndel and William Schuler Linguistics, The Ohio State University

N-gram Example			Experiment
Bigram probabilities predict reading time of <i>girl</i> after <i>red</i> :			
The red apple that the girl ate $\frac{2}{2}$	Experiments used linear mix The significance of model fit	xed effects models with by-i ⁻ differences was determined	tem and by-subject lenger χ^2 tests (
	All effects go in expected, us	sual directions (e.g., high cv	umu/n -grams \rightarrow
X: fixations X: bigram target \underline{X} : bigram condition	1) Cumula	ative <i>I</i> v -grams	
Traditional <i>n</i> -gram measures fail to capture entire sequence. Conditions are never generated; Probability of given sequence is deficient.	Can <i>n</i> -grams reflect n Base factors: Fixed: Sentence pos Fixed: Word length	nore complete probabilities?	? Can
Cumulative N-gram Example	 Fixed: Region lengt Fixed: Was precedine Random: All fixed e 	h (in words) ng word fixated? effects	
Cumu-bigram probs predict reading time of <i>girl</i> after <i>red</i> :	Random: 5-gramRandom: Cumu-5-g	gram	
The red apple that the girl ate	First Pass I	Evaluation (AIC):	
	2	424868	
$\stackrel{\#}{X}$: fixations X : bigram targets X : bigram conditions	Base+N-gram 2424864 (n < 0.05)	Base+Cumu- <i>n</i> -gram 2424856 (n < 0.01)	
Cumulative <i>n</i> -gram product captures entire sequence. Probability of given sequence is well-formed.	$\begin{array}{c} \textbf{Base+Both}\\ 2424848 \ (p < 0.01) \end{array}$	$\begin{array}{c} \mathbf{Base+Both} \\ 2424848 \ (p < 0.01) \end{array}$	
Reflects processing that must be done by humans.		3) H	lierarchic S
NP RC D N IN VP the apple that NP V D N ate the girl Penn Treebank (PTB) grammar Sensitive to local structure	E 2424 E 2424	Fixed: 5-gram Fixed: Cumu-5-gram Random: Surprisal Random: Surprisal First Pass Evaluation (AI Base 2424592 Base+PTB Base+PTB Base+PTB 4587 $(p < 0.01)$ Base+Both Base+1 4583 $(p < 0.05)$ 2424583 $(p < 0.05)$	m (PTB PCFG) (GCG PCFG) C): (GCG PCFG) C): (GCG Bas> < 0.05) 252304 Both Bas > < 0.01) 252304
GCG Example		Resu	lts and Dise
Ν	Results		
N A-aN D N-aD N-rN V-gN the apple that N V-aN-gN D N-aD V-aN-bN	 N-grams predict reading times locally and cumulatively. Cumulative surprisal does not improve reading time fit. PCFG surprisal predicts reading times over n-grams. Local surprisal predicts times over non-local surprisal. Non-local surprisal predicts times over local surprisal. 		
the girl ate Nguyen et al. (2012) generalized categorial grammar (GCG)			Reference
Sensitive to long-distance dependencies (gap -g propagates from filler to gap)	[Frank and Bod, 2011] Frank, S. ar [Nouven et al. 2012] Nouven I. A	nd Bod, R. (2011). Insensitivity of an Schijndel M. and Schulor W	of the human senter $V_{-}(2012)$ Accurate

random intercepts and by-subject random slopes. irst Pass n = 194882; Go-Past n = 193709). aster reading, high surprisal \rightarrow slower reading).

trong linear baseline? nt 1, plus:

Base+PTB	Base+GCG	Base-
$2424587 \ (p < 0.01)$	$2424589 \ (p < 0.05)$	2523047 (
Base+Both	Base+Both	Base+
$2424583 \ (p < 0.05)$	$2424583 \ (p < 0.01)$	2523043 (

ission

-processing system to hierarchical structure. *Psychological Science*. [Nguyen et al., 2012] Nguyen, L., van Schijndel, M., and Schuler, W. (2012). Accurate unbounded dependency recovery using generalized categorial grammars. In Proceedings of the 24th International Conference on Computational Linguistics (COLING '12), pages 2125–2140, Mumbai, India. [van Schijndel et al., 2013] van Schijndel, M., Exley, A., and Schuler, W. (2013). A model of language processing as hierarchic sequential prediction. Topics in Cognitive Science, 5(3):522-540.

THE OHIO STATE UNIVERSITY

2) Cumulative Surprisal

PCFG surprisal reflect more complete probabilities? Base contains factors from Experiment 1, plus: • Fixed: 5-gram • Fixed: Cumu-5-gram • Random: Surprisal (PTB PCFG) • Random: Cumusurp (PTB PCFG) First Pass Evaluation (AIC): Base 2424627 Base+SurpBase+Cumusurp $|2424617 \ (p < 0.01)|$ 2424627 Base+Both Base+Both 2424619 $|2424619 \ (p < 0.01)|$

esults are comparable when using GCG PCFG

ntax

-Past Evaluation (AIC): Base 2523055 -PTB Base+GCGp < 0.01 | 2523050 (p < 0.01) Base+Both-Both p < 0.01 | 2523043 (p < 0.01) |

Conclusion

Hierarchic structure affects reading times Long distance dependencies independently affect reading times

Studies should compute *n*-grams for entire

processed sequence