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Motivation

Observation isn’t explanation

Many current metrics predict complexity with no cognitive explanation.

• Surprisal and entropy reduction reflect corpus statistics.
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Motivation

Observation isn’t explanation

Many current metrics predict complexity with no cognitive explanation.

• Surprisal and entropy reduction reflect corpus statistics.

Goal: An Explanation

• How do current theories of working memory fit with current theories of
language processing?

• Do memory effects predict difficulty over frequency effects?

• Provide a rationale for why humans have certain difficulties

van Schijndel, Schuler Frequency and Memory Costs June 10, 2012 2 / 31



Overview

Hypothesis

Memory effects cause processing difficulty beyond frequency effects
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Memory effects cause processing difficulty beyond frequency effects

1 Working memory primer

2 Memory and language processing theories

3 Introduce connected component parser

4 Eye-tracking evaluation

5 Results
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Working Memory

Temporal and Sequential Cueing

Temporal Context Model [Howard and Kahana, 2002]
Hierarchic Sequential Prediction [Botvinick, 2007]

• Learned sequential associations

• Contextual temporal associations
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Working Memory

Temporal and Sequential Cueing

Temporal Context Model [Howard and Kahana, 2002]
Hierarchic Sequential Prediction [Botvinick, 2007]

• Learned sequential associations

• Contextual temporal associations

Making Tea

Heat Water Brush Teeth Steep Tea

Temporal Cueing in the Morning
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Working Memory

Temporal and Sequential Cueing

Temporal Context Model [Howard and Kahana, 2002]
Hierarchic Sequential Prediction [Botvinick, 2007]

• Learned sequential associations

• Contextual temporal associations

Focus

Attended vs Passive States [McElree, 2006]
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Working Memory

Temporal and Sequential Cueing

Temporal Context Model [Howard and Kahana, 2002]
Hierarchic Sequential Prediction [Botvinick, 2007]

• Learned sequential associations

• Contextual temporal associations

Focus

Attended vs Passive States [McElree, 2006]

Difficulty with

{

Temporal cueing

(Accessing non-focused information)

Temporal cueing
{

Resolving embedded dependencies

Key: Inhibition Facilitation
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Language Processing

Dependency Locality Theory [Gibson, 2000]

Difficulty with
{

Unresolved dependencies

Storage cost

{

Beginning dependencies

Maintaining dependencies

Integration cost
{

Resolving dependencies
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Language Processing

ACT-R [Lewis et al., 2006]

Difficulty with

{

Activation decay

Similarity interference

Encoding cost
{

Beginning a new dependency

Retrieval cost
{

Resolving a dependency

Retrieval can be facilitated by re-activations.
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Language Processing

Dynamic Recruitment [Just and Varma, 2007]
Difficult constructions → extra processing resources

Difficulty with
{

Center embeddings

Recruitment
{

Beginning embeddings

Release
{

Completing embeddings
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Language Processing

Embedding Difference [Wu et al., 2010]

Increased embedding depth
{

Beginning embeddings

Reduced embedding depth
{

Completing embeddings
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Connected Components

S
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NP/N

‘S/NP’ and ‘NP/N’ represent unresolved dependencies
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Predictions

Theory Encoding Integration

Hier. Sequential Prediction positive
Dependency Locality Theory positive positive
ACT-R positive positive
Dynamic Recruitment positive negative
Embedding Difference positive negative

Predicted correlation of parse operations to reading times under each theory
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Connected Component Parsing
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Parser Operations

F and L binary decisions (+,–) made at each timestep

• F(irst): Current word is the first element of a new embedding

• L(ast): Current word is the last element of an embedding

Only one F, only one L [van Schijndel et al, 2013]
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Parser Operations
F and L binary decisions (+,–) made at each timestep

• F(irst): Current word is the first element of a new embedding

• L(ast): Current word is the last element of an embedding

Only one F, only one L [van Schijndel et al, 2013]

• F+L– (Encode): Create a new connected component

• F–L+ (Integrate): Combine two connected components
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Eye Tracking

• Assumption: Slower reading = difficulty

• How much can be processed up to a given point?

• Many different metrics (fixation duration, regression, etc)
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Eye Tracking

• Assumption: Slower reading = difficulty

• How much can be processed up to a given point?

• Many different metrics (fixation duration, regression, etc)

Measure of choice: Go-Past Duration [Clifton et al., 2007]
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Eye Tracking

Go-past durations:

John went to the shop today

Cumulative factors are summed over the go-past region
Non-cumulative factors are based on the initial word in a region (shop)
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Eye Tracking

Go-past durations:

John went to the shopto the shop today

X = Go-past region

Cumulative factors are summed over the go-past region
Non-cumulative factors are based on the initial word in a region (shop)
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Training

Parser accuracy is comparable to Berkeley [van Schijndel et al., 2012]

• Parser and Lexicon: WSJ02-21 [Marcus et al., 1993]
• 39,832 sentences
• 950,028 words

• Ngrams: Brown [Francis and Kucera, 1979], WSJ02-21, BNC,
Dundee[Kennedy et al., 2003]

• 5,052,904 sentences
• 87,302,312 words

Ngrams calculated using SRILM [Stolcke, 2002] with modified Kneser-Ney
smoothing [Chen and Goodman, 1998]
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Evaluation

• Dundee corpus [Kennedy et al., 2003]
• 10 subjects
• 2,388 sentences
• 58,439 words
• 260,124 go-past durations

• Filtered Dundee corpus
• 154,168 go-past durations

Exclusions: UNK-threshold 5, first and last of a line, fixations skipping more
than 4 words (track/attention loss)

Metric Calculations: Probability-weighted, parallel model
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Baseline Metrics
Fitting a linear mixed effects model (lmer in R)

Fixed Effects

• Word length

• Sentence position

• Prev, Next word fixated?

• Unigram and bigram probs

• Surprisal

• Region length

• Cumulative surprisal

• Cumulative entropy reduction

• Joint interactions

• Spillover predictors

By-subject random slopes (Note: Not in paper)

• Effect of interest (e.g. Encode)

• Prev word fixated?

• Cumulative surprisal

• Region length

With Subject and Item random intercepts
Fit to log-transformed durations
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Predictions - Revisited

Theory Encoding Integration

Hier. Sequential Prediction positive
Dependency Locality Theory positive positive
ACT-R positive positive
Dynamic Recruitment positive negative
Embedding Difference positive negative

Predicted correlation of parse operations to reading times under each theory
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Results

Operation Factor Coeff Std. Error t-score p-value

Encoding F+L– 0.023 0.005 4.238 0.001
Integration F–L+ -0.015 0.005 -3.215 0.007
Cue Active F–L– 0.002 0.003 0.800 0.437
Cue Awaited F+L+ -0.004 0.003 -1.298 0.22

Significance of Improvement over Baseline

Each FL factor is cumulative
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Conclusion

• No positive integration cost with frequency
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Conclusion

• No positive integration cost with frequency

• Significant negative integration cost

• Supports: Dynamic Recruitment, Embedding Difference

• No evidence of DLT’s maintenance cost

• Confounds assumption of Slow = Difficult

• Remaining inhibition suggests difficulty beyond frequency effects
(perhaps a cause of frequency effects)
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Fin

Thanks!
Thanks to Kodi Weatherholtz and Rory Turnbull for their assistance

with R-wrangling and working with linear mixed effect models!

Thanks to Peter Culicover, Micha Elsner, and the OSU CompLing

group for feedback on the project.

Questions?
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Frequency Effects

Surprisal [Hale, 2001]

Predictability of a word given the context:

surprisal(xt) = − log2

(
∑

s∈S(x1...xt)
P(s)

∑

s∈S(x1...xt−1)
P(s)

)

(1)

Entropy Reduction [Hale, 2003]

Entropy is a measure of uncertainty:

H(x1...t) =
∑

s∈S(x1...xt)

−P(s) · log2 P(s) (2)

The reduction in uncertainty caused by observing xt :

∆H(x1...t) = max(0,H(x1...t−1)− H(x1...t)) (3)

S(x1 . . . xt) = trees whose leaves have x1 . . . xt as a prefix
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Eye Tracking

Go-past durations:

John went to the shop today

Cumulative factors are summed over the go-past region
Non-cumulative factors are based on the initial word in a region (shop)
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Transforming the response variable
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Transforming the response variable
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