A NEURAL MODEL OF ADAPTATION IN READING

Marten van Schijndel and Tal Linzen November 4, 2018

Department of Cognitive Science, Johns Hopkins University

THOUGHT EXPERIMENT

...cassowary? ...

...cassowary? ...

...cassowary ...

...cassowarycassowary?cassowary ...

...cassowary! ...

```
...cassowary ...
```

...cassowary! ...

You are now less surprised when this person says 'Cassowary'

A PSYCHOLINGUISTIC EXAMPLE OF ADAPTATION (FINE & JAEGER, 2016)

The

The soldiers

The soldiers warned

The soldiers warned about

The soldiers warned about the

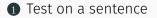
The soldiers warned about the dangers

Unreduced: The soldiers (who were) warned about the dangers ...

Unreduced: The soldiers (who were) warned about the dangers ...

By end of experiment, subjects expected RRC more than at beginning

Unreduced: The soldiers (who were) warned about the dangers ...


By end of experiment, subjects expected RRC more than at beginning

• Humans adapt to syntactic structures

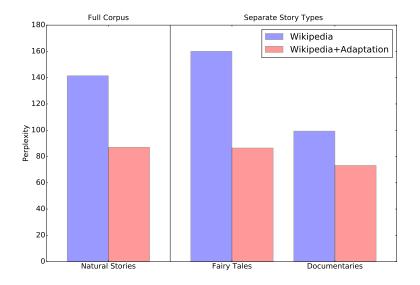
- Domain adaptation (Kuhn & de Mori, 1990; McClosky, 2010) News Model → Biomedical Text
- Handling unknown words (Grave et al., 2015) Learn new words from context
- Style adaptation (Jaech & Ostendorf, 2017) Lawyer A → Lawyer B

- Domain adaptation (Kuhn & de Mori, 1990; McClosky, 2010) News Model → Biomedical Text
- Handling unknown words (Grave et al., 2015) Learn new words from context
- Style adaptation (Jaech & Ostendorf, 2017) Lawyer A → Lawyer B

But can we model human adaptation?

- 1 Test on a sentence
- 2 Update weights based on that sentence

- 1 Test on a sentence
- 2 Update weights based on that sentence
- 8 Repeat on remaining sentences


Experiment 1 (standard):

Does adaptation improve model accuracy?

Test data: Natural Stories Corpus (Futrell et al., 2017)

- 10 texts (485 sentences)
 - 7 Fairy Tales
 - 3 Documentaries

ACCURACY RESULTS

Experiment 2: Evaluate model against human adaptation

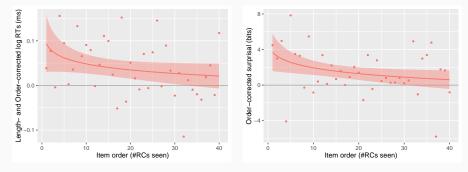
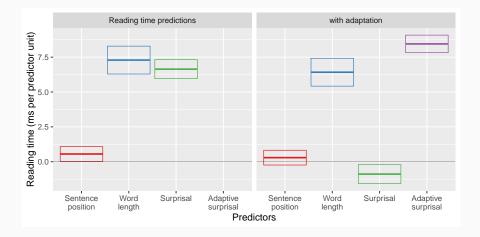
Reading times can be predicted with surprisal (Smith and Levy, 2013)

$$Surprisal(w_i) = -\log P(w_i | w_{1..i-1})$$

- Timeline of adaptation is similar to human adaptation
- Adaptive surprisal predicts reading times better than non-adaptive surprisal

EVALUATION: READING TIMES

The soldiers (who were) warned about the dangers conducted the raid.

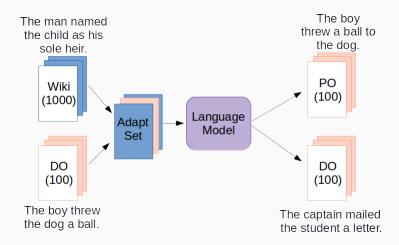
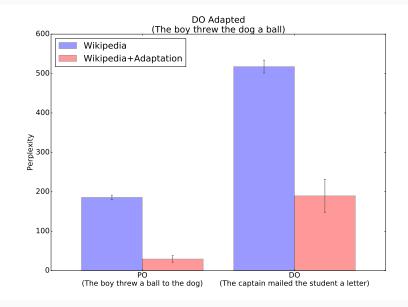

FIGURE 1: Human reading times

FIGURE 2: Adaptive model surprisal


EVALUATION: READING TIMES

Experiment 3: How sensitive is adaptation to different signals? Vocabulary? Syntax? Prepositional Object (PO): The boy threw the ball to the dog. Double Object (DO): The boy threw the dog the ball.

MODEL ADAPTS TO VOCABULARY AND SYNTAX

VAN SCHIJNDEL AND LINZEN

- Proposed a simple adaptation mechanism which
 - Is more accurate than a non-adaptive model
 - Makes more human-like predictions than a non-adaptive model

- Proposed a simple adaptation mechanism which
 - Is more accurate than a non-adaptive model
 - Makes more human-like predictions than a non-adaptive model
 - Is not dependent on learning rate (see paper)
 - Does not seem to suffer from catastrophic forgetting (see paper)

- Proposed a simple adaptation mechanism which
 - Is more accurate than a non-adaptive model
 - Makes more human-like predictions than a non-adaptive model
 - Is not dependent on learning rate (see paper)
 - Does not seem to suffer from catastrophic forgetting (see paper)
- Proposed new ways of evaluating adaptation:

- Proposed a simple adaptation mechanism which
 - Is more accurate than a non-adaptive model
 - Makes more human-like predictions than a non-adaptive model
 - Is not dependent on learning rate (see paper)
 - Does not seem to suffer from catastrophic forgetting (see paper)
- Proposed new ways of evaluating adaptation:
 - Human adaptive behavior

- Proposed a simple adaptation mechanism which
 - Is more accurate than a non-adaptive model
 - Makes more human-like predictions than a non-adaptive model
 - Is not dependent on learning rate (see paper)
 - Does not seem to suffer from catastrophic forgetting (see paper)
- Proposed new ways of evaluating adaptation:
 - Human adaptive behavior
 - Psycholinguistic experiments to probe signal sensitivity: Adaptation is sensitive to both vocabulary and syntax

Thanks!

MultiNLI has 10 domains (Williams, et al. 2018)

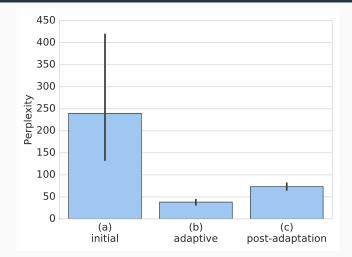
Split each domain into training and testing sets (1000 sentences each)

1 Adapt to a training domain

MultiNLI has 10 domains (Williams, et al. 2018)

Split each domain into training and testing sets (1000 sentences each)

- Adapt to a training domain
- 2 Adapt to a second training domain


MultiNLI has 10 domains (Williams, et al. 2018)

Split each domain into training and testing sets (1000 sentences each)

- Adapt to a training domain
- 2 Adapt to a second training domain

Does the model forget the first adaptive training domain?

CATASTROPHIC FORGETTING TEST

FIGURE 3: Perplexity on the held-out set of G_1 (a) before adaptation, (b) after adaptation to G_1 , (c) after adapting to G_1 then adapting to G_2 .

VAN SCHIJNDEL AND LINZEN

MODEL ADAPTS TO VOCABULARY AND SYNTAX

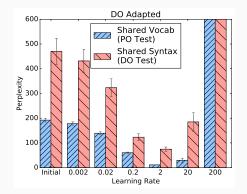


FIGURE 4: Learning rate influence over syntactic and lexical adaptation.

VAN SCHIJNDEL AND LINZEN

	\hat{eta}	$\hat{\sigma}$	t
WITHOUT ADAPTIVE SURPRISAL:			
Sentence position	0.55	0.53	1.03
Word length	7.29	1.00	7.26
Non-adaptive Surprisal	6.64	0.68	9.79
WITH ADAPTIVE SURPRISAL:			
Sentence position	0.29	0.53	0.55
Word length	6.42	1.00	6.40
Non-adaptive Surprisal	-0.89	0.68	-1.31
Adaptive Surprisal	8.45	0.63	13.42

Fixed effects of linear mixed regression

The soldiers warned about the dangers conducted the raid.

QUALITATIVE ADAPTATION TIMELINE

The soldiers warned about the dangers conducted the raid.

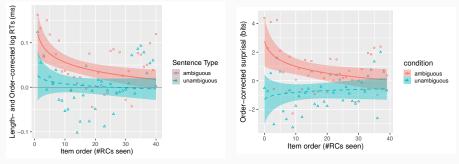


FIGURE 5: Human reading times

FIGURE 6: Adaptive model surprisal