Can entropy explain successor surprisal effects in reading?

Marten van Schijndel and Tal Linzen

Johns Hopkins
A bstract
It is well-established that reading times are influenced by
word probabilities $[7]$, but strangely this holds true even for
words that have not been viewed yet and which are not vis-
ible to the reader $[1,8]$. Angele et al. hypothesize that this
effect may be driven by entropy, but previous studies have
relied on multiple separate models to compute the relevant
measures, which muddies interpretation of their results. We
test their hypothesis using a single neural language model
to estimate the relevant computational measures.

Model

LSTM LM trained on 90M words of English Wikipedia [3]
Measures
Surprisal $[6,4]$ estimates the amount of new information:

$\operatorname{surprisal}\left(w_{t}\right)=-\log \mathrm{P}\left(w_{t} \mid w_{1 . . t-1}\right)$
Successor surprisal [5] estimates upcoming information:

successor $\operatorname{surprisal}\left(w_{t}\right)=-\log \mathrm{P}\left(w_{t+1} \mid w_{1 . . . t}\right)$

$$
=\operatorname{surprisal}\left(w_{t+1}\right)
$$

Entropy [6] estimates the amount of uncertainty:

$$
\begin{aligned}
H\left(w_{t}\right) & =-\sum_{w_{t+1} \in V} \mathrm{P}\left(w_{t+1} \mid w_{1 \ldots . t}\right) \log \mathrm{P}\left(w_{t+1} \mid w_{1 \ldots . t}\right) \\
& =E\left[\operatorname{surprisal}\left(w_{t+1}\right)\right] \\
& =E\left[\operatorname{successor} \operatorname{surprisal}\left(w_{t}\right)\right]
\end{aligned}
$$

Data

Natural Stories Corpus [2]

- 10 texts (485 sentences)
- Self-paced reading times
- 181 participants
- We omit multi-token words (e.g., boar.!.')
- We partition the sentences:
$1 / 3$ exploration : $2 / 3$ confirmation

Successor Surprisal as Entropy Estimator
In practice, with a finite set of observations T which are regressed simultaneously, successor surprisal should provide a Monte Carlo estimator of entropy in that corpus:

$$
\begin{aligned}
\hat{H}(T) & \approx-\sum_{t=1}^{|T|} \frac{1}{|T|} \log \mathrm{P}\left(w_{t+1} \mid w_{1 . . . t}\right) \\
& =\sum_{t=1}^{|T|} \frac{1}{|T|} \operatorname{surprisal}\left(w_{t+1}\right)
\end{aligned}
$$

Figure 1: Successor surprisal plotted against entropy for each word in the Natural Stories Corpus.
The Pearson correlation is 0.45 , providing empirical validation that the limit-case relation between the measures applies even in a relatively small corpus setting.

Reading Time Predictions

Change Number of Possible Continuations
By changing the number of possible continuations considered by the model, we can probe the rough number of continuations reader are sensitive to. Further, if people consider a small number of continuations, that could account for successor surprisal's continued influence.

$$
\begin{align*}
H\left(w_{t}\right) & =\sum_{w_{t+1} \in V} \mathrm{P}\left(w_{t+1} \mid w_{1 \ldots t}\right) \log \mathrm{P}\left(w_{t+1} \mid w_{1 \ldots t}\right) \tag{9}\\
& \approx \sum_{w_{t+1} \in K} \mathrm{P}\left(w_{t+1} \mid w_{1 \ldots t}\right) \log \mathrm{P}\left(w_{t+1} \mid w_{1 \ldots . t}\right) \tag{10}
\end{align*}
$$

K	Successor surprisal	Total entropy
5	0.212	0.541
50	0.335	0.820
500	0.397	0.947
5000	0.434	0.992
50000	0.454	1

K	$\hat{\beta}_{H}$	$\hat{\sigma}_{H}$	$\hat{\beta}_{s}$	$\hat{\sigma}_{s}$
5	3.19	0.69	3.96	0.53
50	3.43	0.70	3.85	0.54
500	4.11	0.69	3.66	0.54
5000	4.67	0.70	3.52	0.54
50000	4.87	0.70	3.47	0.54

Figure 2: Correlation between successor surprisal and entropy when entropy is Figure 3: Entropy (H) and successor surprisal (s) coefficients in a regressio computed over the most probable K continuations. model for the exploratory data partition, when H is calculated over the \bar{K} most probable continuations.

Conclusion

- Findings support Angele et al. hypothesis that uncertainty drives the successor surprisal effect in reading times.
- Entropy is unable to account for full successor effect; some other driver likely present
- Readers are sensitive to a large number of possible continuations.

Mixed model formula:
RT \sim word_length + sentence_position + surprisal + successor_surprisal + entropy $+(1 \mid$ item $)+$ (0 + word_length + sentence_position + surprisal + successor_surprisal + entropy | subject)

References
[1] Bernhard Angele, Elizabeth R. Schotter, Timothy J. Slattery, Tara L. Tenenbaum, Klinton Bicknell, and Keith Rayner.
Do successor effects in reading reflect lexical parafoveal processing? evidence from corpus-based and experimental eye movement data.
Jourral of Memory and Language, 79 80:76-96, 2015
[2] Richard Futrell, Edward Gibson, Hal Tily, Anastasia Vishnevetsky, Steve Piantadosi, and Evelina Fedorenko The natural stories corpus.
In Lanouace Resources a
[3] Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni
Coloress green recurrent networks dream hierarchically.
4] John Hale.
A probabilistic earley parser as a psycholinguistic mode.
In Proceedings of NAACL, 2001.
55 R. Kiegl, A. Nuthmann, and R. Engbert.
Tracking the mind during reading the infuence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135:12 35, 2000 .
6] Claude Shannon.
A mathematical theory of communication.
[7] Nathaniel J. Smith and Rogerer Levy.
Nathanie I. Smith and Roger Levy.
The effect of word predictability
Cognition, 128:302 -319, 2013.
[8] Marten van Schijndel and William Schuler.
Addressing surprisal deficiencies in reading time models
In Proceedings of the Computational Linonuistics for Linonustic Complerity Workshop Association for Computational Linowistics 2010

