Quantity doesn't buy quality syntax
 with neural language models

Cornell University
mv443@cornell.edu https://vansky.github.io

Marten van Schijndel ${ }^{1}$, Aaron Mueller ${ }^{2}$, and Tal Linzen ${ }^{3}$
${ }^{1}$ Department of Linguistics, Cornell University
${ }^{2}$ Center for Language and Speech Processing, Johns Hopkins University ${ }^{3}$ Department of Cognitive Science, Johns Hopkins University

JOHNS HOPKINS
U NIVERSIT Y

Abstract

Neural language models (LMs) can predict upcoming words remarkably well on average, but they often assign unexpectedly high probability to ungrammatical words. In this work we investigate to what extent these shortcomings can be mitigated by increasing the size of the network and increasing the amount of training data.

Evaluation data
Marvin and Linzen (2018) Syntactic Challenge Corpus [4] Grammatical sentence should be more likely than ungrammatical one $\mathrm{P}($ The author laughs $)>\mathrm{P}(*$ The author laugh $)$

Model
2-layer LSTM LMs (5 random initializations each) trained ... $\text { with }\left\{\begin{array} { l } { 1 0 0 \text { hidden units } } \\ { 2 0 0 \text { hidden units } } \\ { 4 0 0 \text { hidden units } } \\ { 8 0 0 \text { hidden units } } \\ { 1 6 0 0 \text { hidden units } } \end{array} \quad \text { on } \left\{\begin{array}{l} 2 \mathrm{M} \text { tokens } \\ 10 \mathrm{M} \text { tokens } \\ 20 \mathrm{M} \text { tokens } \\ 40 \mathrm{M} \text { tokens } \\ 80 \mathrm{M} \text { tokens } \end{array}=125\right.\right. \text { models }$ Baseline Models - Gulordava LSTM LM [3] Unidirectional 2-layer, 650 hidden units (39M parameters) 80M tokens - GPT Transformer [5] Unidirectional 12-layer, 110M parameters 1B (1000 M) tokens - BERT (Base) Transformer [2] Bidirectional (w/ future context removed [6]) 12-layer, 110M parameters 3.3B (3300M) tokens - Human grammaticality judgments [4] 84 humans ≈ 10 judgments / pair

References
(1] Alexei Baevski, Sergei Edunov, Yinhan Liu, Luke Zettlemoyer, and Michael Auli Cloze-driven pretraining of sel-attention networks.

2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Annual Conference of the North American Chapter of the
[3] Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni.
Colorless green recurrent networks dream hierarchically.
In Proceedings of the 2018 Annual Conference of the North American Chapter of the
[4] Rebecca Marvin and Tal Linzen.
Targeted syntactic evaluation of language models

the 2018 Conference on Empirical Methods in Natural La
1192-1202. Association for Computational Linguistics, 2018.
5] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training
[5] Thomas Wolf.
Some additional ex
by Yoav Goldberg.

Agreement accuracy by construction

Figure 2: Agreement in an object relative clause
The movies the security guard likes

Figure 4: Agreement across an ORC (no that)

Figure 5: Agreement in a short coordinated verb phrase

Number of training tokens required to reach human and near perfect accuracy in each construction, assuming $20 M \rightarrow 40 M$ rate of improvement for every doubling of data

Conclusions

- Layer size improves syntactic performance to a point.
- More training data helps sporadically

But even with consistent improvement, LMs require an unreasonable amount of data to solve such a simple task.

We should likely focus on syntactically structured architectures or explicit syntactic supervision.

Related Finding

Pre-training a BERT-like LM on more data produces tiny downstream improvements [1].
$562 \mathrm{M} \rightarrow 18 \mathrm{G}\left(5.6 e^{8} \rightarrow 1.8 e^{10}\right)$ tokens improved NLI accuracy from $81.7 \% \rightarrow 82.3 \%$.

