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Abstract

Neural language models (LMs) can predict upcoming words re-
markably well on average, but they often assign unexpectedly high
probability to ungrammatical words. In this work we investigate
to what extent these shortcomings can be mitigated by increasing
the size of the network and increasing the amount of training data.

Evaluation data

Marvin and Linzen (2018) Syntactic Challenge Corpus [4]
Grammatical sentence should be more likely than ungrammatical one

P(The author laughs) > P(∗The author laugh)

Models

2-layer LSTM LMs (5 random initializations each) trained . . .

with



100 hidden units
200 hidden units
400 hidden units
800 hidden units
1600 hidden units

on



2M tokens
10M tokens
20M tokens
40M tokens
80M tokens

= 125 models

Baseline Models

• Gulordava LSTM LM [3]
Unidirectional
2-layer, 650 hidden units (39M parameters)
80M tokens

• GPT Transformer [5]
Unidirectional
12-layer, 110M parameters
1B (1000 M) tokens

• BERT (Base) Transformer [2]
Bidirectional (w/ future context removed [6])
12-layer, 110M parameters
3.3B (3300M) tokens

• Human grammaticality judgments [4]
84 humans
≈10 judgments / pair

Aggregate results

Corpus size Layer size

2M → 10M 5508.8 100 → 200 768.5
10M → 20M 0.1 200 → 400 63.5
20M → 40M 12.9 400 → 800 0.2
40M → 80M 0.2 800 → 1600 0.1

Table 1: Strength of evidence for improvements in agreement prediction
accuracy as a result of increasing corpus size averaging across layer size (left) or
layer size averaging across corpus size (right), as quantified by Bayes factors.
Boldfaced Bayes factors indicate strong evidence of improvement.
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Agreement accuracy by construction
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Figure 1: Agreement across a prepositional phrase
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Figure 2: Agreement in an object relative clause
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Figure 3: Agreement across an object relative clause (ORC)
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Figure 4: Agreement across an ORC (no that)
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Figure 5: Agreement in a short coordinated verb phrase
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Figure 6: Agreement in a long coordinated verb phrase

How much data is enough?
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Figure 7: Human
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Figure 8: 99.99%
Number of training tokens required to reach human and
near perfect accuracy in each construction, assuming
20M→40M rate of improvement for every doubling of
data

Conclusions

• Layer size improves syntactic performance to a point.
• More training data helps sporadically

But even with consistent improvement, LMs require an
unreasonable amount of data to solve such a simple task.

We should likely focus on syntactically structured architectures or
explicit syntactic supervision.

Related Finding

Pre-training a BERT-like LM on more data produces tiny downstream
improvements [1].
562M → 18G (5.6e8 → 1.8e10) tokens improved NLI accuracy from
81.7%→82.3%.


