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Abstract

Computational models of memory are often expressed as hierarchic sequence mod-

els, but the hierarchies in these models are typically fairly shallow, reflecting the

tendency for memories of superordinate sequence states to become increasingly

conflated. This article describes a broad-coverage probabilistic sentence process-

ing model that uses a variant of a left-corner parsing strategy to flatten sentence

processing operations in parsing into a similarly shallow hierarchy of learned se-

quences. The main result of this paper is that a model with these kinds of constraints

can process broad coverage newspaper text with the same accuracy as a state-of-

the-art parser not defined in terms of sequential working memory operations.

Introduction

Recent models of working memory (Howard and Kahana, 2002; Botvinick, 2007) are de-

fined in terms of hierarchic sequential and temporal cueing operations. Observed events (for ex-

ample, visible grasping and manipulation actions) are organized into hypothesized sequences of

more general states (actions in a process of making coffee), encoded in a changing context (a set of

continuous-valued neural units expressing features of states) representing a weighted set of active

hypotheses pursued in parallel. Sequences of these states may themselves belong to higher-level

sequences (steps in making breakfast, for example), forming a multi-level hierarchy. Sequential

transitions between states in each level of this hierarchy may be directly learned from experience,

then recalled rapidly and reliably by cueing successive states on features of preceding states (ob-

servations of pouring coffee into a mug are likely to be followed by adding milk, say). But when

these learned sequences terminate, the process must recall its place in some immediately superor-

dinate sequence (the current step in making breakfast). Unlike content-based sequential cueing,

the transition from a terminating subordinate state to a state in some immediately superordinate

sequence may not have been directly learned, so the superordinate state must instead be recalled

based on the similarity of a set of temporal features associated with this state to a set of temporal

features in the current context. These temporal features change as the current context changes.

As a result, this temporal cueing becomes less reliable and takes more time to converge as the
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similarity of these temporal features decreases. This provides a tidy explanation of scale-invariant

long-term recency effects in serial recall experiments (Bjork and Whitten, 1974; Crowder, 1982).1

Can sentence processing be modeled using the same kind of sequential and temporal cueing

operations popular in the computational memory community? Words, phrases, and sentences form

hierarchies just like observed events, actions, and processes. But unlike phrase structure trees and

discourse structures, the hierarchic sequence models described in the computational memory liter-

ature are typically fairly shallow, reflecting the tendency for memories of superordinate sequence

states to become increasingly conflated as the temporal features of the current context diverge from

their temporal features.

This article describes a broad-coverage probabilistic sentence processing model that uses

a variant of a left-corner parsing strategy (Aho and Ullman, 1972) to flatten sentence processing

operations into a similarly shallow hierarchy of learned sequences. These sequences are then

mapped to explicit states in a hierarchic probabilistic sequence model. Unlike similar broad-

coverage sequence model parsers of Crocker and Brants (2000) and Henderson (2004), this model

exploits a property of left-corner parsing that ensures that subordinate sequences are initiated or

terminated no more than once in each hypothesis after each observed word. This provides a natural

constraint on temporal cueing operations, yielding a shallower hierarchy of sequence states than

those required by Crocker and Brants (2000) and Henderson (2004).

The main result of this paper is that a model with these kinds of constraints can process

broad coverage newspaper text with the same accuracy as a state-of-the-art parser not defined

in terms of sequential working memory operations. As argued by Crocker and Brants (2000),

broad coverage models like this are valuable because they allow experimental evaluation of in-

teractions among factors across a variety of phenomena under uniform modeling assumptions,

providing a more rigorous test of claims about general linguistic behavior, including unanticipated

consequences of modeling decisions. This is expected to facilitate broad-coverage experimental

evaluations in which memory-based measures (for example, measures of subordinate sequence

termination as a proportion of the set of active hypotheses) can be combined with frequency-based

measures (for example, surprisal or entropy reduction; Hale, 2001, 2006) on a fair footing.

The remainder of this article is organized as follows: The first section describes an incre-

mental processing model based on sequential and temporal cueing operations, The next section

adapts the model for use with probabilistic context-free grammars, A broad-coverage evaluation

of this model follows, and the article concludes with a discussion of issues related to this model.

Model

The model described in this article represents time in discrete steps t, corresponding to

discrete observations of words xt. At each time step, the model maintains several hypotheses qt

which are probabilistically weighted and considered in parallel, as an explicit decomposition of

the high-dimensional hidden context of a recurrent neural network like that of Howard and Kahana

(2002) or Botvinick (2007). Each hypothesis defines a hierarchy of sequence states qd
t , ordered

by depth d from superordinate (d = 1) to subordinate (d > 1). Each sequence state qd
t defines a

maximal connected component of predicted phrase structure ad
t /bd

t , consisting of an active sign of

category ad
t lacking an awaited sign of category bd

t yet to come. Any connected sequence of signs

descending over time in a predicted phrase structure tree (e.g. S, VP, and NP in Figure 1) can form

a single connected component state (e.g. S/NP).

Over time, the model predicts syntactically structured signs, compares them against ob-

served words, generalizes them into new connected component states, then merges them with

1That is, subjects show a preference for recalling recent items in list recall studies even when these items are

separated by distractor tasks (e.g. performing arithmetic), contra predictions of working memory models that posit

short-term buffers to explain recency effects.
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Figure 1. Two disjoint connected components of a phrase structure tree for the sentence the studio

bought the publisher’s rights, shown immediately prior to the word publisher.

subordinate and superordinate connected component states as the syntactic relations that connect

them in the phrase structure tree are predicted. Any sequence of hierarchically-organized con-

nected component states generated by this model corresponds to a traversal of a predicted phrase

structure tree. For example, Figure 2 shows a hierarchic state sequence corresponding to a traversal

of a predicted phrase structure tree for the sentence The studio bought the publisher’s rights.

Note that transitions within a single hierarchy level may predict phrase structure relations

upward along sequences of initial children (from the NP the publisher to the D the publisher’s

between time steps 5 and 6, for example), and downward along sequences of final children (from

the VP bought the publisher’s rights to the NP the publisher’s rights between time steps 3 and 4).

Although this predicted phrase structure may have an unbounded number of recursive initial or

final children (for example, sequences of possessives extending the initial portion of a noun phrase

or sequences of adjectives extending the final portion of a noun phrase, as shown in Figure 3),

it requires only a bounded number of connected component states at any given time step. This

flattening of the phrase structure into potentially cyclic sequences of connected component states

is similar to the programming strategy of replacing head recursion and tail recursion with loops

(where program instructions correspond to states, recursive function calls in the call stack corre-

spond to subordinate states in the state hierarchy, and loops correspond to cyclic transitions over

states like S/N and D/G). This is also similar to the left-corner parsing strategy commonly used in

sentence processing models (Johnson-Laird, 1983; Abney and Johnson, 1991; Gibson, 1991; Hen-

derson, 2004; Lewis and Vasishth, 2005), except that connected components in the state hierarchy

defined here are paired into active signs with awaited signs somewhere on their final (right) edge,

rather than as awaited signs with active signs somewhere on their initial (left) edge.2

Sequence Modeling with Connected Components

The general hierarchic sequence model described in this article is defined in terms of a set of

syntactic relations — in particular, a set of context-free rules of the form a → a′ b′ (meaning sign a
is composed of an initial child sign a′ followed by final child sign b′), or a → x (meaning sign a is

associated directly with an observation of word x). In addition to this set of syntactic relations, this

model also assumes an ability to predict initial sub-signs a′ of larger signs b, denoted b
+
→ a′ ... .

A simple nondeterministic process for incrementally predicting phase structures using a

sequence of connected component states can be defined as a deductive system, given an input

sequence consisting of an top-level connected component state ⊤/⊤, corresponding to an existing

discourse context, followed by a sequence of observed words x1, . . . , xn, processed in time order.3

2In previous work, we therefore refer to this as right-corner parsing (Schuler et al., 2010).

3A deductive system consists of inferences or productions of the form:
P

Q
R, meaning premise P entails conclu-
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Figure 2. Incrementally constructed representations of the syntactic structure of the sentence The

studio bought the publisher’s rights (a–f), and the associated sequence of random variable values

in a hierarchic sequential prediction model (g). Open circles represent hidden variables, shaded

circles represent observed variables (xt), and directed edges represent conditional dependencies.

‘Pea-pod’ ovals summarize dependencies over subsumed variables. Selected random variables are

also annotated with example values, shown diagonally.

As each xt is encountered, it is connected to the existing components or it introduces a new disjoint

component using productions that treat each word as the first observation of a newly initiated

connected component state, or as the last observation of a terminated connected component state,

or as neither, or as both.

First, if an observation xt can attach as the awaited sign of the most recent (most subordi-

nate) connected component a/b, it is hypothesized to do so, turning this incomplete sign into a

complete sign a (F–, below); or if the observation can serve as a lower descendant of this awaited

sign, it is hypothesized to form the first complete sign a′ in a newly initiated connected component

(F+):

a/b xt

a
b → xt (F–)

a/b xt

a/b a′
b

+
→ a′ ... ; a′ → xt (F+)

sion Q according to rule R.
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Figure 3. Phrase structure tree for the sentence The studio bought the book’s publisher’s distribu-

tion rights (a), with repeated initial and final signs for book’s and distribution; and the associated

sequence of random variable values in a hierarchic sequential prediction model (b), with corre-

sponding repeated states D/G and S/N at time steps 8 and 10.

Then, if either of these complete signs (a or a′ above, matched to a′′ below) can attach as an initial

child of the awaited sign of the immediately superordinate connected component state a/b, it is

hypothesized to do so and terminate the subordinate connected component state, with xt as the

last observation of the terminated connected component (L+); or if the observation can serve as

a lower descendant of this awaited sign, it is hypothesized to remain disjoint and form its own

connected component (L–):

a/b a′′

a/b′′
b → a′′ b′′ (L+)

a/b a′′

a/b a′/b′′
b

+
→ a′ ... ; a′ → a′′ b′′ (L–)

These initiation (F) and termination (L) productions are similar to the push and pop operations

respectively of a nondeterministic pushdown automaton or the shift and reduce operations of a

shift-reduce parser (taking all non-observation consequents in this model to be store items), except

that the model observes a memory-based processing constraint that it may use no more than one

initiation (F) and one termination (L) production per time step. When applied to parsing, this

model is therefore more constrained than the PDA-based models of Crocker and Brants (2000) and

Henderson (2004), which allow unlimited numbers of initiations and terminations between each

pair of observations. An example derivation of the sentence The studio bought the publisher’s

rights, using these productions is shown in Figure 4.

Note that the derivation shown in Figure 4 contains only two instances of a connected com-

ponent more than one word long being composed with a disjoint superordinate connected compo-
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Figure 4. Derivation of the sentence The studio bought the publisher’s rights, using F+, F–, L+,

and L– productions.

nent, requiring the superordinate connected component to be recalled by temporal cueing. (This

occurs after the genitive marker ’s, merging the publisher’s with the studio bought, and after the

word rights, merging the sentence with the discourse context ⊤/⊤.) In general this only results

from a non-initiation (F–) followed by a termination (L+). All other combinations of productions

(non-termination, or initiation with immediate termination) can be implemented by sequential cue-

ing on the content of the most subordinate state. This gives the system the capability to directly

measure temporal cueing operations during parsing. When extended to a probabilistic model, this

measure can be expressed as a proportion of a set of weighted hypotheses, and potentially com-

bined with other probabilistic measures like surprisal and entropy reduction (Hale, 2001, 2006).

Also note that if there is no bound on the number of disjoint connected component states that

can be hypothesized in a hierarchy, this system will be able generate all and only those syntactic

structures allowed by the context-free rules it is defined over. This can be shown by observing

that (i) every binary phrase structure tree over t observations must also contain t branches from a

parent sign to a pair of children,4 and (ii) for each observation xt in a complete phrase structure

there is a unique largest sign which is co-final with xt. Inspection of the F and L operations shows

that F– and F+ isolate this largest co-final sign (as a in the consequent of F– or a′ in the consequent

of F+), and L+ and L– connect this sign (as a′′) to a parent and a sibling in some phrase structure

(to b and b′′ in L+ and to a′ and b′′ in L–). Since each such connection is unique, and since there

are only t such connections in any complete phrase structure, the system must be able to predict

any complete phrase structure for any sequence of t observations.

A Probabilistic Hierarchic Sequence Model

This process can be extended to calculate probabilities for phrase structure trees by intro-

ducing probability distributions φ and λ over the binary F and L decisions defined above, with

constraints taken directly from these productions. F decisions (about whether to initiate a new

subordinate sequence) are constrained such that:

Pφ(‘–’ | b x) 6= 0 only if b → x (1a)

Pφ(‘+’ | b x) 6= 0 only if b
+
→ a′... ; a′ → x (1b)

4This includes a connection from the top-level sign of this structure to some discourse structure ⊤.
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L decisions (about whether to terminate a subordinate sequence) are constrained such that:

Pλ(‘+’ | b a′′) 6= 0 only if b → a′′ b′′ (2a)

Pλ(‘–’ | b a′′) 6= 0 only if b
+
→ a′... ; a′ → a′′ b′′ (2b)

Constraints for probability distributions α and β over the active and awaited signs a and b in

hypothesized connected component states are also derived from F and L productions:

Pα(a′ | b a′′) 6= 0 only if b
+
→ a′... ; a′ → a′′ b′′ (3)

Pβ(b′′ | a′ a′′) 6= 0 only if a′ → a′′ b′′ (4)

These constraints are more precisely defined in the next section.

Since F productions take observations x as input and produce complete signs a as output,

and L productions take complete signs a as input and produce connected component states a/b as

output, the process may only iterate by applying exactly one F production and one L production

at each time step. Since F and L productions each have two (‘+’ and ‘–’) options, a complete

hierarchic transition model σ can be defined using only four cases: one for each combination of F

and L productions. These cases are represented as addends in the definition below. Each addend

is a product of factors for: (i) hypothesizing a combination of an initiation and a termination of a

subordinate state sequence (using φ and λ probabilities), (ii) hypothesizing an active and awaited

sign for the most subordinate connected component state in the resulting hierarchy (using α and β
probabilities), and (iii) deterministically carrying forward empty or unmodified states from the pre-

vious time step. All models depend on the depth d of the most subordinate connected component

state at the previous time step, and (in the case of the β model) on whether the first parameter is an

active or awaited sign (‘A’ or ‘B’, respectively). In this definition, D is an arbitrary bound on the

size of the state hierarchy (set to 4 in the evaluation described below), and J...K is a deterministic

indicator function, evaluating to 1 if ‘...’ is true, and 0 otherwise, used to represent a deterministic

distribution.

The transition model is factored into three stages, below. First, the probability is split across

the two possible outcomes for the F decision — whether to introduce a new subordinate sequence

or not — based on the most subordinate connected component state qd
t−1 in the state hierarchy:

Pσ(q1..D
t | q1..D

t−1 xt−1)
def
= Pφd

(‘–’ | bd
t−1 xt−1) · Pσ′

d
(q1..D

t | q1..D
t−1 ad

t−1)

+ Pφd
(‘+’ | bd

t−1 xt−1) · Pσ′

d+1
(q1..D

t | q1..D
t−1 xt−1); d

def
= max{d′ |qd′

t−1 6= ‘–’}

(5a)

For each F outcome, the transition model then splits the remaining probability across the two pos-

sible outcomes for the L decision — whether to terminate the current most subordinate sequence

or not — traversing the predicted tree downward from bd−1
t−1 if so (using rule bd−1

t−1 → a′′ bd−1
t ), and

traversing the predicted tree upward from a′′ if not (using rule ad
t → a′′ bd

t ):

Pσ′

d
(q1..D

t | q1..D
t−1 a′′)

def
= Pλd

(‘+’ | bd−1
t−1 a′′) · Jad−1

t =ad−1
t−1 K · PβB,d−1

(bd−1
t | bd−1

t−1 a′′) · Pσ′′

d−1
(q1..D

t | q1..D
t−1 )

+ Pλd
(‘–’ | bd−1

t−1 a′′) · Pαd
(ad

t | bd−1
t−1 a′′) · PβA,d

(bd
t | ad

t a′′) · Pσ′′

d
(q1..D

t | q1..D
t−1 )

(5b)

For each combination of F and L outcomes, the transition model then ensures the rest of the

hierarchy q1..D
t is copied over from the previous time step, or replaced with null values below the

most subordinate connected component state in the hierarchy:

Pσ′′

d
(q1..D

t | q1..D
t−1 )

def
= Jq1..d−1

t =q1..d−1
t−1 K · Jqd+1..D

t = ‘–’K (5c)
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Note that the active sign of a superordinate state is deterministically carried forward whenever xt

is the last observation in a subordinate state sequence (when λ is positive). This is because the

active sign of a superordinate state does not change when a subordinate state is terminated. These

transition probabilities σ are then combined with observation probabilities ξ to define a most likely

sequence of connected component hierarchies q̂1..D
1..T :

q̂1..D
1..T

def
= argmax

q1..D
1..T

T
∏

t=1

Pσ(q1..D
t | q1..D

t−1 xt−1) · Pξ(xt | bd
t ); d

def
= max{d′ |qd′

t−1 6= ‘–’} (6)

This model predicts phrase structure while restricting access to superordinate states as a

memory-based recency constraint. Since the model is implemented as a simple sum of products, it

is essentially equivalent to a localist representation in a recurrent neural network, albeit one with

a hidden context unit for every combination of disjoint connected components, represented in an

explicit state hierarchy. In this respect, the hierarchic sequence model described in this article is

similar to the hierarchic connectionist memory model of Botvinick (2007). However, in order to

maintain a close connection with linguistic notions of phrase structure, the model is not trained

using unsupervised learning techniques traditionally applied to connectionist models.

Application to Probabilistic Context Free Grammars

The constraints described in the previous section can be satisfied in a variety of ways.

The model evaluated in this article is directly defined over a Probabilistic Context Free Gram-

mar (PCFG), trained using latent variable induction (Petrov et al., 2006). PCFGs are widely used

in parsing because they provide a simple branching stochastic process (Collins, 1997), because

well-studied algorithms exist for inferring or refining PCFGs from data (Petrov et al., 2006), and

because PCFGs have been shown to be useful as a basis for information-theoretic accounts of

garden path effects and reading time delays (Jurafsky, 1996; Hale, 2001, 2003, 2006; Levy and

Jaeger, 2007).

Side- and Depth-specific Rules

The general hierarchic sequence model described in the previous section can be defined for

a given PCFG by first deriving side- and depth-specific rule probabilities and expected counts of

initial sub-signs derived from rule probabilities in Chomsky Normal Form (CNF).5 This derivation

is expressed using context-free grammar notation:

• Pγ(a → x) denotes the probability of a sign of category a expanding into an observation,

• Pγs,d
(a′ → a′′ b′′) denotes the probability that a sign of category a′ at hierarchy depth d

occurring on (initial or final) side s of its parent will expand into an initial sign of category a′′

followed by a final sign of category b′′,

• Eγ∗

d
(b

+
→ a′ ...) denotes the expected number of times a sign of category a′ at hierarchy

depth d will occur as an initial sub-sign of another sign of category b, and

• Eγ∗

d
(b

∗

→ a′ ...) denotes the expected number of times a sign of category a′ at hierarchy

depth d will occur either as equivalent to or as an initial sub-sign of another sign of category b.

In lieu of a confusability model, the model instead imposes hard constraints on the number

of distinct syntactically connected components allowed in each hypothesis. This has the effect

of bounding the number of center embeddings allowed in any partial syntactic tree (in particular,

initial children of final children in any CNF derivation). This is done by first computing a side-

and depth-specific PCFG ‘fit’ model δ
(i)
s,d, defining the probability that a subtree below a sign of

category a, occurring on its parent’s initial or final side s ∈ {A, B}, will fit within a bounded

5PCFGs not in CNF can be compiled into CNF by binarizing with unique symbols.
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depth d of disjoint connected components. This fit model is computed according to the following

recursive definition, where i is the recursive iteration:

P
δ

(0)
s,d

(1 | a)
def
= 0 (7a)

P
δ

(i)
A,d

(1 | a)
def
=

∑

x

Pγ(a → x) +
∑

a′,b′

Pγ(a → a′ b′) · P
δ

(i−1)
A,d

(1 | a′) · P
δ

(i−1)
B,d

(1 | b′) (7b)

P
δ

(i)
B,d

(1 | a)
def
=

∑

x

Pγ(a → x) +
∑

a′,b′

Pγ(a → a′ b′) · P
δ

(i−1)
A,d+1

(1 | a′) · P
δ

(i−1)
B,d

(1 | b′) (7c)

Note that the only difference between the initial-sign (δ
(i)
A,d) and final-sign (δ

(i)
B,d) cases above is

simply that the depth is incremented for initial children of final children. These initial-final zig-

zags form the breaks between connected components in the hierarchy. In practice the recursive

product is estimated to some constant I using value iteration (Bellman, 1957).

Now a side- and depth-specific PCFG model γs,d can be defined by renormalizing over the

probability mass isolated in δ
(I)
s,d :

PγA,d
(a → a′ b′)

def
=

Pγ(a → a′ b′) · P
δ

(I)
A,d

(1 | a′) · P
δ

(I)
B,d

(1 | b′)

P
δ

(I)
A,d

(1 | a)
(8a)

PγB,d
(a → a′ b′)

def
=

Pγ(a → a′ b′) · P
δ

(I)
A,d+1

(1 | a′) · P
δ

(I)
B,d

(1 | b′)

P
δ

(I)
B,d

(1 | a)
(8b)

This renormalizing over δ
(I)
s,d ensures no probability mass is lost when the depth of the model is

bounded. Again, the only difference between the initial- and final-sign cases is that the depth is

incremented for initial children of final children.

Initial Sub-sign Expected Counts

The model also needs initial sub-sign expected counts, which are based on the expected

number of times a constituent of category a′′ occurs at the beginning of a constituent of category b
after any number of expansions. This is also estimated recursively with j as the recursive iteration:

Eγ∗

d
(b

1
→ a′ ...)

def
=

∑

b′

PγB,d
(b → a′ b′) (9a)

Eγ∗

d
(b

j
→ a′′ ...)

def
=

∑

a′,b′′

Eγ∗

d
(b

j−1
→ a′ ...) · PγA,d

(a′ → a′′ b′′) (9b)

Eγ∗

d
(b

+
→ a′′ ...)

def
=

∞
∑

j=1

Eγ∗

d
(b

j
→ a′′ ...) (9c)

Eγ∗

d
(b

∗

→ a′′ ...)
def
= Jb=a′′K + Eγ∗

d
(b

+
→ a′′ ...) (9d)

Here again, the recursive products and infinite sum are estimated to some constant J using value

iteration (Bellman, 1957).

Transition Operations for Language Comprehension

The model probabilities are then just straightforward probabilistic implementations of the

constraints specified in Equations 1a–4 expressed in terms of the bounded PCFG probabilities and

initial sub-sign expected counts defined above, normalized appropriately:



LANGUAGE PROCESSING AS HIERARCHIC SEQUENTIAL PREDICTION 10

1. The initiation model φ probabilities are calculated from the expected counts of a sign of

syntactic category a′ occurring as an initial sub-sign of a larger sign of category b multiplied by

the probability of that category generating an observation x:

Pφd
(‘–’ | b a′)

def
=

Jb = a′K ·
∑

x Pγ(a′ → x)

Eγ∗

d
(b

∗

→ a′ ...) ·
∑

x Pγ(a′ → x)
(10a)

Pφd
(‘+’ | b a′)

def
=

Eγ∗

d
(b

+
→ a′ ...) ·

∑

x Pγ(a′ → x)

Eγ∗

d
(b

∗

→ a′ ...) ·
∑

x Pγ(a′ → x)
(10b)

2. The termination model λ probabilities are calculated from the expected counts of a sign

of syntactic category a′ occurring as an initial sub-sign of a larger sign of category b multiplied by

the probability of that sign having an initial child of category a′′:

Pλd
(‘+’ | b a′′)

def
=

∑

a′,b′′Jb = a′K · PγB,d
(a′ → a′′ b′′)

∑

a′,b′′ Eγ∗

d
(b

∗

→ a′ ...) · PγA,d
(a′ → a′′ b′′)

(11a)

Pλd
(‘–’ | b a′′)

def
=

∑

a′,b′′ Eγ∗

d
(b

+
→ a′ ...) · PγA,d

(a′ → a′′ b′′)
∑

a′,b′′ Eγ∗

d
(b

∗

→ a′ ...) · PγA,d
(a′ → a′′ b′′)

(11b)

3. The active sign model α probabilities are calculated from the expected counts of a sign

of syntactic category a′ occurring as an initial sub-sign of a larger sign of category b multiplied by

the probability of that sign having an initial child of category a′′:

Pαd
(a′ | b a′′)

def
=

∑

b′′ Eγ∗

d
(b

+
→ a′ ...) · PγA,d

(a′ → a′′ b′′)
∑

a′,b′′ Eγ∗

d
(b

+
→ a′ ...) · PγA,d

(a′ → a′′ b′′)
(12)

4. The awaited sign model β probabilities are simply the probability that a sign of category a
has a final child of category b′ given that it has an initial child of category a′:

Pβs,d
(b′ | a a′)

def
=

Pγs,d
(a → a′ b′)

∑

b′ Pγs,d
(a → a′ b′)

(13)

Transition Model for Language Comprehension

These individual model probabilities are combined into a single hierarchic transition prob-

ability σ, as described in Equation 5a of the previous section. These transition probabilities σ are

then combined with preterminal and terminal probabilities π and ξ, described below.

In the previous section, observations were generated directly from awaited signs. In prac-

tice, it is more efficient to make the assumption that certain syntactic categories are preterminals,

which generate a single lexical observation as a child. Such an assumption is made primarily for

efficiency since only a subset of syntactic categories must then be considered for prediction, which

reduces the complexity of the φ, α, and β models that depend on preterminal signs.

Formally, the preterminal probabilities π define the normalized probabilities of generating

a preterminal p as an initial sub-sign of a larger sign of category b:

Pπd
(p | b)

def
= Eγ∗

d
(b

∗

→ p ...) ·
∑

x

Pγ(p → x) (14)

Terminal probabilities ξ are then defined as the normalized probabilities of generating an observa-

tion x from a preterminal p:

Pξ(x | p)
def
=

Pγ(p → x)
∑

x Pγ(p → x)
(15)
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These transition probabilities σ, preterminal probabilities π, and terminal probabilities ξ are

then combined to define a most likely sequence q̂1..D
1..T :

q̂1..D
1..T

def
= argmax

q1..D
1..T

T
∏

t=1

Pσ(q1..D
t | q1..D

t−1 pt−1) · Pπd′
(pt | bd

t ) · Pξ(xt | pt); d
def
= max{d′ |qd′

t−1 6= ‘–’}

(16)

Evaluation

In order to determine whether the flattened hierarchy generated by the single initiation and

single termination constraints described above could predict phrase structure trees as accurately

as a model without such constraints, the hierarchic sequence model described in this article was

evaluated on a standard parsing task (Collins, 1997). This task reproduces labeled bracketings on

a standard test set of newspaper text from the Wall Street Journal section of the Penn Treebank

(Marcus et al., 1993), which can be directly compared against published results of other mod-

els. Comparable results to these systems would indicate that the memory-based constraints of the

hierarchic sequence model don’t harm language processing performance.

Training

The model evaluated in this article uses the Petrov et al. (2006) split-merge-smooth algo-

rithm to extract a latent variable PCFG from the Penn Treebank (Marcus et al., 1993). The corpus

delimits syntactic constituents with parentheses and category labels. The split-merge-smooth al-

gorithm attempts to find latent subcategorizations (splits) of each category label which conform

to distinct distributions in a set of training data relative to the surrounding category labels. For

example, the class of present tense ditransitive verbs (such as gives) may be discovered to have a

different distribution than the class of present tense transitive verbs (such as owns), though both

are typically labelled ‘VBZ’ (present tense verb) in the Treebank. Another iteration of the splitting

algorithm may then find that certain categories appear more often as first arguments of ditransitive

verbs (now that they have been uniquely identified) than as arguments of transitive verbs. Assign-

ing each such distribution a unique subcategory label helps encode mild contextual information

into each label. To avoid overfitting to the training data, splits which are not sufficiently statis-

tically informative are then merged back into a larger category. The PCFG relations used in the

previous section are then calculated over these refined grammar categories.

Results

The accuracy of the hierarchic sequence model as a parser was compared to that of the

Petrov and Klein (2007) and Roark (2001) parsers using varying beam widths (numbers of com-

peting hypotheses).6 The Petrov and Klein (2007) parser is a state-of-the-art chart parser based

on the same latent variable PCFG (Petrov et al., 2006) used to define the hierarchic sequence

model evaluated in this article. As a chart parser, it does not calculate prefix probabilities like

the model described in this article and therefore cannot be used to calculate complexity measures

like surprisal or entropy reduction. The Roark (2001) parser is an incremental parser widely used

in cognitive modeling evaluations, and can be used to calculate prefix probabilities necessary for

calculating complexity measures like surprisal, but it is not as accurate as that of Petrov and Klein.

Neither the Petrov and Klein nor Roark parsers are defined in terms analogous to sequential or

temporal cued recall operations.

6The Petrov and Klein (2007) parser was run using the Viterbi decoding option on the latent variable grammar.
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System Precision Recall F-score

Roark 2001 (CNF) 86.6 86.5 86.5

Current Model (CNF, beam width 500) 86.6 87.3 87.0

Current Model (CNF, beam width 2000) 87.8 87.8 87.8

Current Model (CNF, beam width 5000) 87.8 87.8 87.8

Petrov Klein (CNF) 88.1 87.8 88.0

Petrov Klein (not CNF) 88.3 88.6 88.5

Table 1

Accuracy comparison with state-of-the-art syntactic parsers. Numbers in parentheses are the num-

ber of parallel activated hypotheses. The left-corner parser used here restricts trees to Chomsky

Normal Form (CNF), in which trees are binary branching at all nonterminals except preterminals.

This makes the model less able to reproduce unary branches in the Penn Treebank.

The evaluated hierarchic sequence model restricts the number of disjoint connected compo-

nents in any hypothesis to at most four. This limit was empirically determined to be sufficient to

achieve greater than 99.9% coverage on the Wall Street Journal Corpus (Schuler et al., 2010).

All parsers were trained on Sections 02-21 of the Wall Street Journal portion of the Penn

Treebank (Marcus et al., 1993) and tested on Section 23. No tuning was done as part of the

conversion to a sequence model. With the exception of the Roark (2001) parser,7 all parsers

used 5 iterations of the Petrov et al. (2006) split-merge-smooth algorithm.8 These results are

shown in Table 1. Note that the Petrov and Klein (2007) parser allows unary branching within the

phrase structure, which is not directly supported by the set of production rules described in the

model section of this article.To obtain a fair comparison, it was also run with strict binarization

(restricting the grammar to Chomsky Normal Form). The hierarchic sequence model described in

this article achieves comparable accuracy to the Petrov and Klein (2007) parser assuming a strictly

binary-branching phrase structure, and superior accuracy to the Roark (2001) parser.

Conclusion and Discussion

The results of this evaluation indicate that the flattened hierarchic sequence model described

in this article can obtain similar accuracy to state-of-the-art methods. This shows that the seem-

ingly austere constraints of shallow hierarchic sequential prediction do not harm performance. The

ready application of such general prediction to syntactic parsing suggests that human language

processing might be performed using a shallow hierarchic sequential process similar to those

described in existing computational models of memory (Howard and Kahana, 2002; Botvinick,

2007).

Semantic disambiguation and reference grounding would presumably permit better results

by providing a better approximation, though this is outside the scope of the current article. For

example, this model may be extended to account for unbounded semantic dependencies such as

filler-gap phenomena in a similar manner (Schuler, 2011).

Some combinations of operations in this model correspond to combinators in a Combinatory

Categorial Grammar (CCG) (Steedman, 2000) in a maximally incremental parse. In particular:

• F+ followed by L– performs the CCG operation of forward type raising of xt,

7The top-down nature of the Roark (2001) parser is not amenable to efficient use of the subcategorizations output

by the split-merge-smooth algorithm.
8This is the recommended number of split-merge iterations to obtain high accuracy while avoiding overfitting (Petrov

and Klein, 2007).
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• F+ followed by L+ performs forward type raising of xt followed by the CCG operation

of forward function composition of a/b on this raised category, and

• F– performs the CCG operation of forward function application of a/b on xt.

The model described in this article can therefore be taken as an exploration of the origins of

combinators as a consequence of sequential and temporal cueing operations.9

Sturt and Lombardo (2005) warn about the need for constituents to be interconnected in

processing, in order to pass along appropriate information to predict reading time delays. But the

definition of connectivity they use includes underspecified or non-immediate relations such as the

initial sub-sign relations described in this article, and is therefore more permissive than the imme-

diate graph-theoretic notion of connectivity used to define the limits of connected components. In

the model described in this article, all disjoint connected components within the same hypothesis

are syntactically connected by Sturt and Lombardo’s (2005) more permissive definition since the

awaited signs of superordinate connected components are related by initial sub-sign relations (
+
→)

to the active signs of subordinate connected components. Indeed, probabilistic operations can be

defined to be dependent on other connected components in this model as well (although recall of

superordinate connected components is dispreferred due to recency effects).

PCFGs provide a simple branching probabilistic model that can be used to generate complex

syntactic structures and can be trained to predict these structures for novel sentences with state-

of-the-art accuracy. This article shows that this kind of model can be incrementally processed in a

straightforward way that is compatible with current assumptions about working memory. Carefully

trained but computationally simple models like this may provide a framework for evaluating the

contribution of recency and other memory-based effects on processing complexity (for example,

costs associated with F– or L+ operations) on top of frequency effects currently measured by

probabilistic metrics like surprisal, entropy reduction, and uniform information density.
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