vanschm@ling.osu.edu

Introduction

Analyses of filler-gap dependencies usually involve complex syntactic rules or heuristics; however recent results suggest that filler-gap comprehension begins earlier than seemingly simpler constructions such as ditransitives or passives. Therefore, this work models filler-gap acquisition as a byproduct of learning word orderings (e.g. SVO vs OSV), which must be done at a very young age to extract meaning from language.

This approach learns role assignment in filler-gap constructions in a manner consistent with current developmental findings and is extremely robust to initialization variance. Additionally, this model is shown to be able to account for a characteristic error made by learners during this period (A and B gorped) interpreted as A gorped B).

What is Filler-Gap?

- Argument appears outside canonical position
- Content questions and relative clauses:
- $[What]_i$ did the boy eat t_i ?
- That is [the apple]_i that the boy at t_i .
- Categorized by which argument appears outside canonical position:
- **Subject**: [the boy]_{*i*} that t_i at the apple
- **Object**: [the apple]_i that the boy at t_i

What is 1-1 Role Bias?

- Children assign a unique role to each noun
- Leads to characteristic interpretation error:

John and Mary gorped interpreted as John gorped Mary

[Gertner and Fisher, 2012]

Timeline

Age	13mo	$15 \mathrm{mo}$	20mo	25mo
Wh-S	No	Yes	Yes	Yes
Wh-O	No	\rightarrow (Yes)	→) Yes	→ Yes
	- <u>O</u> -			
			Yes —————	No →◯

- Developmental timelines Wh-S: Non-canonical subject comprehension Wh-O: Non-canonical object comprehension 1-1: 1-1 role bias errors
- Parentheses indicate weak comprehension
- Nodes correspond to findings

[Seidl et al., 2003, Gagliardi et al., 2014] [Gertner and Fisher, 2012]

Bootstrapping into Filler-Gap: An Acquisition Story

Marten van Schijndel and Micha Elsner Linguistics, The Ohio State University

Results

Final model expectations:

- CHILDES role annotations determine accuracy
- Collapse all non-agent roles to 'object' role (children do not seem to generalize ditransitives)

Overall Accuracy

	Eve $(n = 4820)$			Adam $(n = 4461)$				
	Р	R	F	Р	R	F		
Initial	.54	.64	.59	.53	.60	.56		
Trained	.52	.69	.59*	.51	.65	.57*		
Initial $_c$.56	.66	.60	.55	.62	.58		
Trained _{c}	.54	.71	.61*	.53	.67	.59*		
*p << .01								

Top: Raw accuracies

Bottom: Non-agent roles collapsed to a single role • Improvements slight since filler-gap is uncommon

Filler-Gap Accuracy

	Eve	e (n	= 1345)	Adam (n = 1287)		
	Р	R	F	Р	R	F
Initial $_c$.53	.57	.55	.53	.52	.52
Trained _{c}	.55	.67	.61*	.54	.63	.58*

*p << .01

Filler-gap accuracy when non-agent roles are collapsed

1-1 Role Bias Error

		Error rate	
	Initial (given 2 args)	.66	
	Trained (given 2 args)	.13	
	Connor et al. 2009	.73	
Frequ	ency of labelling an NN	V sentence	e SO

• Compared to previous model of 1-1 role bias

- Before training, model is comparable to previous work
- After training, 1-1 role bias error is infrequent

[Gagliardi et al., 2014] Gagliardi, A., Mease, T. M., and Lidz, J. (2014). Discontinuous development in the acquisition of filler-gap dependencies: Evidence from 15- and 20-month-olds. Harvard unpublished manuscript: http://www.people.fas.harvard.edu/~gagliardi.

The Ohio State University

Subject/Object Accuracy

	P	R	F	Р	R	F
Eve	Sub	oj (n	= 691)	Ob	oj (n	= 654)
Initial $_c$.66	.83	.74	.35	.31	.33
Trained _{c}	.64	.84	$.72^{\dagger}$.45	.52	.48*
Adam	Sub	oj (n	= 886)	Ob	j (n	= 1050)
Initial $_c$.69	.81	.74	.33	.27	.30
Trained _{c}	.66	.81	.73	.44	.48	.46*
$^{\dagger}p < .02 \ ^{*}p < .01$						

• Major improvement on noncanonical objects • Minor decline on noncanonical subjects

That/Wh- Accuracy

	P	R	F	Р	R	F
Eve	Wh	- (n	= 689)	Tha	at (r	n = 125)
Initial $_c$.63	.45	.53	.43	.48	.45
Trained _{c}	.73	.75	.74*	.44	.57	$.50^{\dagger}$
Adam	Wh	I- (n	= 748)	Tha	at (r	n = 189)
Initial $_c$.50	.37	.42	.50	.50	.50
Trained _{c}	.61	.65	.63*	.47	.56	$.51^{\dagger}$
$^{\dagger}p < .02 \ {}^{*}p < .01$						

• Model is slower to acquire *that*-relatives than *wh*-relatives • Children are too [Gagliardi and Lidz, 2010]

Summary

Model accounts for subject/object asymmetry

• Model accounts for that/wh- asymmetry

• Model accounts for 1-1 role bias error trajectory

Conclusions

• Filler-gap comprehension does not require hierarchical structure

• Filler-gap comprehension may be learned as a byproduct of learning word orderings

References

[Bello, 2012] Bello, S. (2012). Identifying indirect objects in French: An elicitation task. In *Proc. CLA 2012*.

[Connor et al., 2009] Connor, M., Gertner, Y., Fisher, C., and Roth, D. (2009). Minimally supervised model of early language acquisition. In Proc. CoNLL 2009.

[Gagliardi and Lidz, 2010] Gagliardi, A. and Lidz, J. (2010).

Morphosyntactic cues impact filler-gap dependency resolution in 20and 30-month-olds. In *Poster session of BUCLD35*.

[Gertner and Fisher, 2012] Gertner, Y. and Fisher, C. (2012). Predicted errors in children's early sentence comprehension. *Cognition*, 124.

[Seidl et al., 2003] Seidl, A., Hollich, G., and Jusczyk, P. W. (2003). Early understanding of subject and object wh-questions. Infancy, 4(3).