Language Statistics

won't solve

Language Processing

Marten van Schijndel
Department of Linguistics, Cornell University
December 3, 2021

What is "Language Processing"?

What is "Language Processing"?

Marr's Levels

- Computational:
 Most NLP applications (sentiment analysis, machine translation, summarization, etc)
- Algorithmic / Representational:
 Some parsing, NN interpretability, computational psycholinguistics
- Implementational

Two kinds of statistical learning naysayers

Generative Linguists

- Poverty of the stimulus
- Language requires special innate cognitive biases

Multimodality Proponents

- Can't learn meaning from form (Bender & Koller, 2020)
- Need to be embodied physically and socially (Bisk et al., 2020)

talk tldr: Check your data

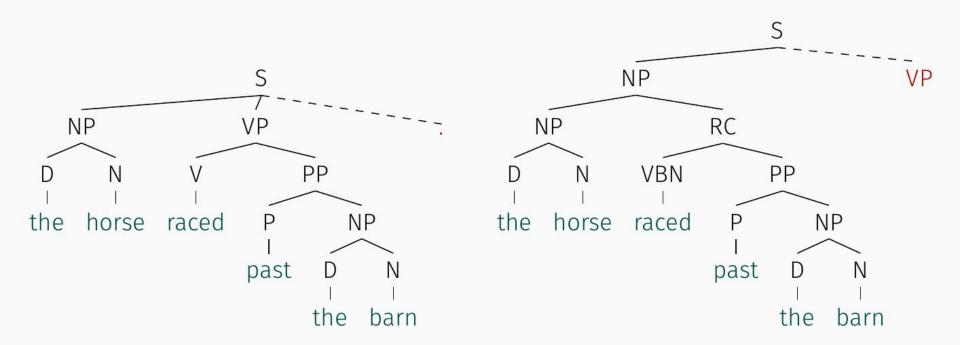
Algorithmic level requires more than Language stats

Tal Linzen

COGNITIVE SCIENCE

A Multidisciplinary Journal

Cognitive Science 45 (2021) e12988 © 2021 Cognitive Science Society LLC


ISSN: 1551-6709 online DOI: 10.1111/cogs.12988

Single-Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty

Marten van Schijndel, PhD,^a o Tal Linzen, PhD^b

^aDepartment of Linguistics, Cornell University ^bDepartment of Linguistics and Center for Data Science, New York University The horse raced past the barn fell

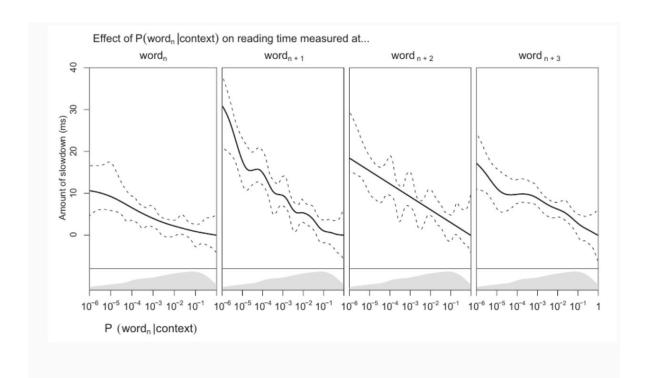
The horse which was raced past the barn fell

Garden paths produce a visceral response

Garden path responses exist in the tail of the response distribution

They exist in the tail because

the statistics are in the tail (predictability)
 OR


2) the response is unusual (reanalysis)

NNs can predict garden path existence

van Schijndel & Linzen, 2018, *Proc CogSci*Futrell et al., 2019, *Proc NAACL*Frank & Hoeks, 2019, *Proc CogSci*Davis & van Schijndel, 2020, *Proc CogSci*

NNs can predict garden path existence

Look beyond garden path *existence* to garden path *magnitude*

$$RT(w_i) = \delta_0 S(w_i) + \delta_{-1} S(w_{i-1}) + \delta_{-2} S(w_{i-2}) + \delta_{-3} S(w_{i-3})$$

Smith and Levy, 2013, Cognition

WikiRNN:

Gulordava et al. (2018) LSTM

Data: Wikipedia (80M words)

SoapRNN:

2-layer LSTM (Same parameters as WikiRNN)

Data: Corpus of American Soap Operas (80M words; Davies, 2011)

Mapping probs to reading times

Reading Time Data (SPR; Prasad and Linzen, 2019)

- 80 simple sentences (fillers)
- 224 participants
- 1000 words / participant

Linear Mixed Regression

time ~ text position + word length x frequency + ... + predictability,

Smith & Levy, 2013:

$$\delta_0 = 0.53 \ \delta_{-1} = 1.53 \ \delta_{-2} = 0.92 \ \delta_{-3} = 0.84$$

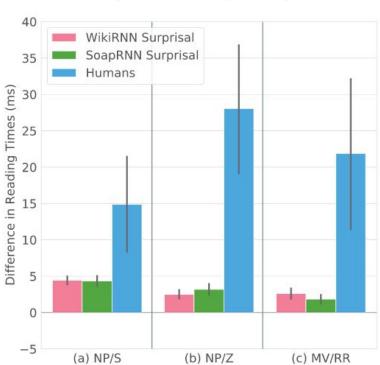
WikiRNN using Prasad & Linzen, 2019:

$$(\delta_0 = 0.04) \ \delta_{-1} = 1.10 \ \delta_{-2} = 0.37 \ \delta_{-3} = 0.39$$

SoapRNN using Prasad & Linzen, 2019:

$$(\delta_0 = -0.04) \ \delta_{-1} = 0.83 \ \delta_{-2} = 0.91 \ \delta_{-3} = 0.44$$

Three Garden Paths


```
NP/S: The woman saw \begin{cases} \text{the doctor wore a hat.} \\ \text{that the doctor wore a hat.} \end{cases}
NP/Z: When the woman \begin{cases} \text{visited her nephew laughed loudly.} \\ \text{visited, her nephew laughed loudly.} \end{cases}
MV/RR: The horse \begin{cases} \text{raced past the barn fell.} \\ \text{which was raced past the barn fell.} \end{cases}
```

The horse raced past the barn fell

The horse which was raced past the barn fell

The linear relationship doesn't hold

Predicted/empirical mean garden path effects

Paper Conclusions

Conversion rates are fairly similar, but all underestimate human responses

Suggests human responses influenced by factors beyond predictability

Talk Conclusion

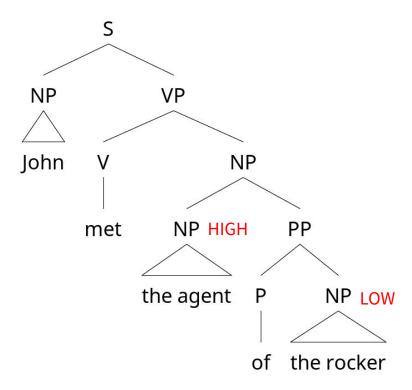
Algorithmic processing cannot be learned from Language statistics

Computational level requires more than Language stats

Forrest Davis

Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment

Forrest Davis and Marten van Schijndel
Department of Linguistics
Cornell University
{fd252|mv443}@cornell.edu


Proceedings of ACL 2020

Does our data match our goal?

Why can we not predict garden path response sizes?

Because the boggle response is not in the training data

John met the agent of the rocker that is divorced

John met the agent of the rocker that is divorced

John met the agent of the rocker that is divorced

English speakers have a preference for LOW

John met the agent of the rocker that is divorced

Carreiras and Clifton, 1993; Frazier and Clifton, 1996; Carreiras and Clifton, 1999; Fernández, 2003

Spanish speakers have a preference for HIGH

John met the agent of the rocker that is divorced

Carreiras and Clifton, 1993; Frazier and Clifton, 1996; Carreiras and Clifton, 1999; Fernández, 2003

Local (LOW) Non-Local (HIGH)

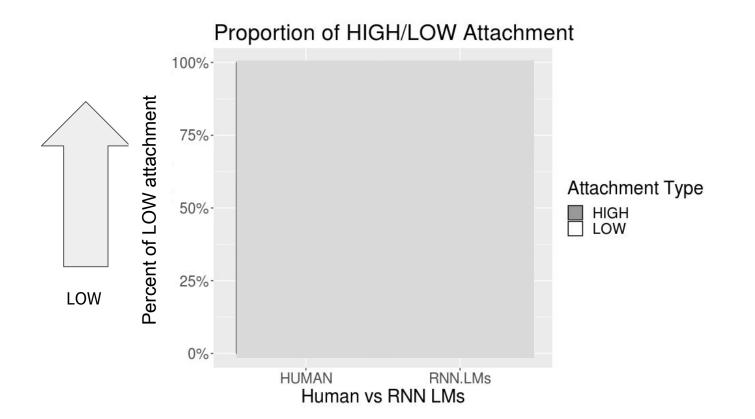
<u>Afrikaans</u>	<u>Japanese</u>
Arabic	Norwegian
Croatian	<u>Persian</u>
Danish	Polish
Dutch	B. Portuguese
English	Romanian
<u>French</u>	Russian
<u>German</u>	<u>Spanish</u>
Greek	Swedish
<u>Italian</u>	<u>Thai</u>

Do RNN LMs learn language attachment preferences?

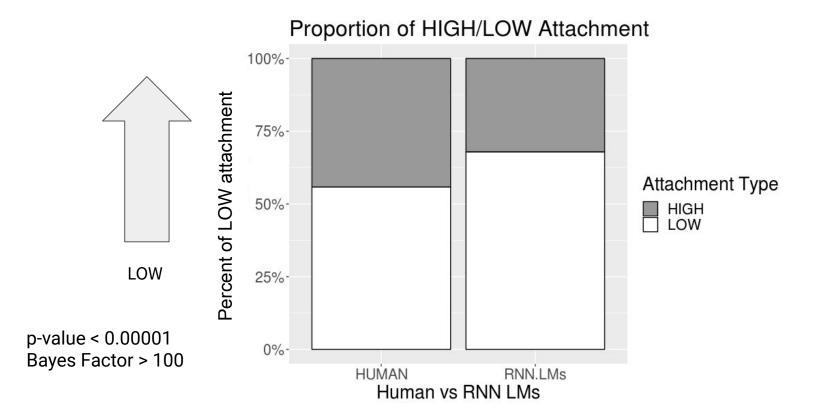
- Used existing stimuli from psycholinguistics (40 sentence frames)
- Balanced for number

1)

a) Andrew had dinner yesterday with the <u>nephew</u> of the teachers that **was** divorced.


HIGH

b) Andrew had dinner yesterday with the nephews of the <u>teacher</u> that **was** divorced.



from Fernández (2003)

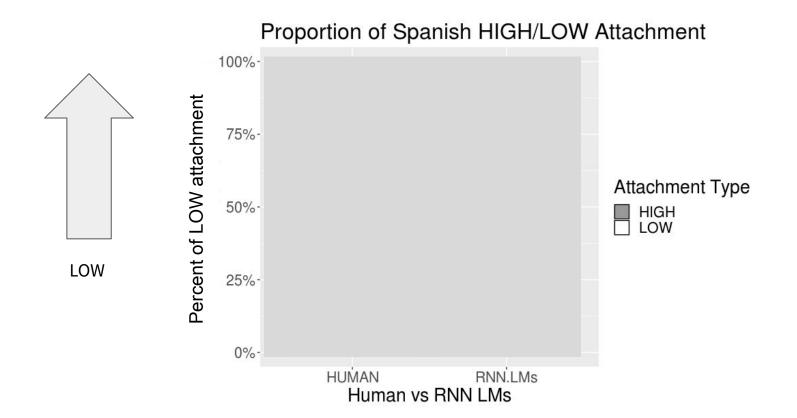
RNN LMs seem to have a LOW bias

RNN LMs seem to have a LOW bias

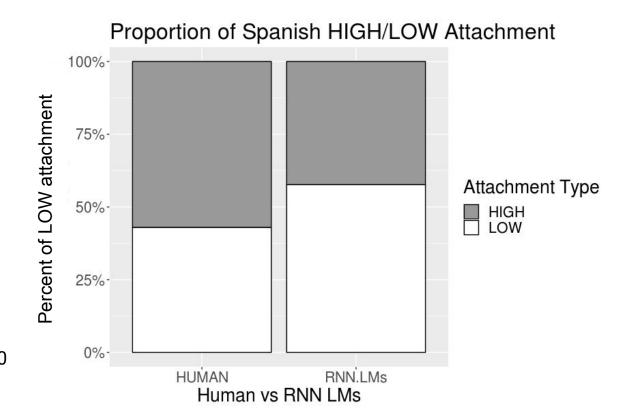
Do RNN LMs learn Spanish preference?

2)

a) André cenó ayer con el <u>sobrino</u> de los maestros que **estaba** divorciado.



b) André cenó ayer con los sobrinos del <u>maestro</u> que **estaba** divorciado.



from Fernández (2003)

Spanish Results

Spanish Results

p-value < 0.00001 Bayes Factor > 100

Why can't the model learn Spanish attachment?

RNN LMs can acquire HIGH or LOW bias when trained on synthetic data

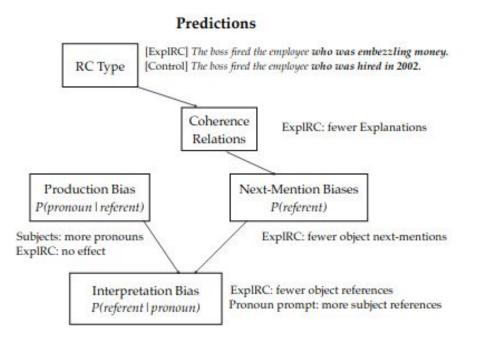
- Synthetic data from PCFG with declarative sentences and sentences with the target RC construction
- 10% of training data had unambiguous RC sentences
 - Incrementing how much of that had HIGH vs LOW
- When at least 50% of RC sentences had HIGH attachment model preferred HIGH attachment

Comprehension signal not in raw text data

Spanish Wikipedia (training corpus):

LOW 69% more frequent than HIGH

Spanish Newswire data:


LOW 21% more frequent than HIGH

Comprehension and Production

Comprehension is a superset of Production

Conclusions

- Language statistics reflect human production biases
- Most NLP tasks are about comprehension

What kind of training signal is needed for comprehension?

Thanks!

Tal Linzen

Forrest Davis

Cornell NLP

Unsplash Images

Slide 2
@amadorloureiroblanco @wocintechchat
@jerry_318 @kaitlynbaker

Slide 40

@krivitskiy @roller1