The statistics of the unseen influence reading times

Marten van Schijndel
September 8, 2017
Department of Cognitive Science, Johns Hopkins University
(Department of Linguistics, The Ohio State University)

(1) The frequencies of skipped material affect linguistic processing (2) Upcoming frequencies affect linguistic processing

Overview

- Surprisal (PCFG, N-gram) is a way to estimate text complexity

Overview

- Surprisal (PCFG, N-gram) is a way to estimate text complexity - Experienced complexity is reflected in reading speed

Overview

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

Claim:
Current surprisal models inadequately estimate reading complexity

Overview

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

Claim:
Current surprisal models inadequately estimate reading complexity

This work:
Shows that material skipped by saccades slows reading Presents a simple way for surprisal to address that complexity

Reading complexity is estimated based on region ending

The red apple that the $\stackrel{2}{\text { girl }}$ ate ...

Reading complexity is estimated based on region ending

The red apple that the $\underset{w_{w_{4}}}{ } \underset{w_{w_{3}}}{\text { girl }}$ ate ...

Reading model of 'girl':
sentence position

Reading complexity is estimated based on region ending

The red apple that the $\overbrace{\overbrace{W_{6}}^{\text {girl }}}^{4 \text { chars }}$ ate ...

Reading model of 'girl':
sentence position, word length

Reading complexity is estimated based on region ending

The red apple that the $\overbrace{\overbrace{w_{6}}^{\text {girl }}}^{4 \text { chars }}$ ate ...

Reading model of 'girl':
sentence position, word length, P(girl|the)

Reading complexity is estimated based on region ending

Reading model of 'girl':
sentence position, word length, P(girl|the)

Reading complexity is estimated based on region ending

Reading model of 'girl':
sentence position, word length, P(girl|the)

Reading complexity is estimated based on region ending

Reading model of 'girl':
sentence position, word length, P(girl|the)

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

The red apple that the girl ate ...

$$
N \text {-gram-surp(girl) }=-\log \mathrm{P}(\text { girl } \mid \text { the })
$$

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

$$
\text { PCFG-surp(girl) }=-\log P\left(T_{6}=\operatorname{girl} \mid T_{1} \ldots T_{5}=\text { The } \ldots \text { the }\right)
$$

AcCumuLated surprisal fixes the Theoretical problem

Cumulative N -gram Surprisal

The red apple that the girl ate ...

Accumulated surprisal fixes the theoretical problem

Cumulative N-gram Surprisal

The red apple that the girl ate ...

$$
\operatorname{cumu}-n-\operatorname{gram}\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}+1}^{f_{t}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)
$$

Accumulated surprisal fixes the theoretical problem

Cumulative N-gram Surprisal

The red apple that the girl ate ...

$$
\operatorname{cumu}-n-\operatorname{gram}\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}+1}^{f_{t}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)
$$

Accumulated surprisal fixes the theoretical problem

Cumulative N-gram Surprisal

> The red apple that the girl ate ...

$$
\operatorname{cumu}-n-\operatorname{gram}\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}+1}^{f_{t}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)
$$

Accumulated surprisal fixes the theoretical problem

Cumulative N-gram Surprisal
The red apple that the girl ate ...

$$
\text { cumu-n-gram }\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}+1}^{f_{t}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)
$$

AcCumuLated surprisal fixes the Theoretical problem

Cumulative PCFG Surprisal

$$
\operatorname{Cumu-PCFG}\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}}^{f_{t}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)
$$

AcCumuLated surprisal fixes the Theoretical problem

Cumulative PCFG Surprisal

$$
\operatorname{Cumu} \operatorname{PCFG}\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}}^{f_{t}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)
$$

AcCumuLated surprisal fixes the Theoretical problem

Cumulative PCFG Surprisal

$$
\operatorname{Cumu} \operatorname{PCFG}\left(w, f_{t-1}, f_{t}\right)=\sum_{i=f_{t-1}}^{f_{t}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)
$$

AcCumuLated surprisal fixes the Theoretical problem

Cumulative PCFG Surprisal

$$
\operatorname{Cumu}-\operatorname{PCFG}\left(w, f_{\mathrm{t}-1}, f_{\mathrm{t}}\right)=\sum_{i=f_{\mathrm{t}-1}}^{f_{\mathrm{t}}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)
$$

How well does this fix work?

N-gram surprisal

- 5-grams
- Trained on Gigaword 3.0 (Graff and Cieri, 2003)
- Computed with KenLM (Heafield et al., 2013)

How well does this fix work?

N-gram surprisal

- 5-grams
- Trained on Gigaword 3.0 (Graff and Cieri, 2003)
- Computed with KenLM (Heafield et al., 2013)

PCFG surprisal

- Trained on WSJ 02-21 (Marcus et al., 1993)
- Computed with van Schijndel et al., (2013) parser

How well does this fix work?

University College London (UCL) Corpus (Frank et al., 2013)

- 43 subjects
- reading 361 short sentences from online novels
- frequent comprehension questions

How well does this fix work?

Baseline mixed effects model

Fixed Factors

- sentence position
- word length
- region length
- whether the previous word was fixated

How well does this fix work?

Baseline mixed effects model

Fixed Factors

- sentence position
- word length
- region length
- whether the previous word was fixated

Random Factors

- All fixed factors as by-subject random slopes
- Item, subject and subject \times sentence intercepts

ACCUMULATION IMPROVES N-GRAM SURPRISAL

ACCUMULATION IMPROVES N-GRAM SURPRISAL

ACCUMULATION IMPROVES N-GRAM SURPRISAL

Accumulation does not help PCFG surprisal

What does accumulation model?

POSSIBLE ACCUMULATION INFLUENCES

Subsequent regression

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Subsequent regression

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Subsequent regression

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Subsequent regression

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Subsequent regression

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Inference

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Inference

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Inference

The red (apple that the girl) ate ...

POSSIBLE ACCUMULATION INFLUENCES

Parafovial processing

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Parafovial processing

Th(e red apple that t)he girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Parafovial processing

Th(e red apple that t)he girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Prediction (entropy)

The red apple that the girl ate ...

POSSIBLE ACCUMULATION INFLUENCES

Prediction (entropy)

The red (apple that the girl) ate ...

POSSIBLE ACCUMULATION INFLUENCES

Prediction (entropy)

The red (apple that the girl) ate ...

Accumulation alternative: Successor surprisal

Cumulative surprisal handles regression and inference

Accumulation alternative: Successor surprisal

Cumulative surprisal handles regression and inference

Parafovial: Th(e red apple that t)he girl ate ...
Prediction: The red $\underbrace{(\text { apple that the }}_{\text {accumulated }} g^{2}{ }^{2}$ rl) ate ...

Accumulation alternative: Successor surprisal

Cumulative surprisal handles regression and inference

Parafovial: Th(e red apple that t)he girl ate ...
Prediction: The red $\underbrace{(\text { apple that the }}_{\text {accumulated }}$ girl $^{2})$ ate ...
Other accumulation mechanisms presuppose earlier accumulation

How much influence does upcoming material have?

SUCCESSOR EFFECTS INFLUENCE READING TIMES

Upcoming material influences reading times

Successor effects influence reading times

Upcoming material influences reading times

- Orthographic effects
(Pynte, Kennedy, \& Ducrot, 2004; Angele, Tran, \& Rayner, 2013)

Successor effects influence reading times

Upcoming material influences reading times

- Orthographic effects
(Pynte, Kennedy, \& Ducrot, 2004; Angele, Tran, \& Rayner, 2013)
- Lexical effects
(Kliegl et al., 2006; Li et al., 2014; Angele et al., 2015)

UPCOMING MATERIAL AFFECTS PROCESSING

Angele et al. (2015)

A child ${ }^{*}$ XXXXXXX the fish

UPCOMING MATERIAL AFFECTS PROCESSING

Angele et al. (2015)
$\begin{array}{l:c:c:c:c} & \text { A } & \text { child } & \text { XXXXXXX } & \text { the } \\ \text { A fish } \\ & \text { child } & \text { * } & \text { annoyed } & X X X\end{array}$ fish

UPCOMING MATERIAL AFFECTS PROCESSING

Angele et al. (2015)

UPCOMING MATERIAL AFFECTS PROCESSING

Angele et al. (2015)

Lexical frequency of the upcoming masked word affects processing

UPCOMING MATERIAL AFFECTS PROCESSING

Angele et al. (2015)

Lexical frequency of the upcoming masked word affects processing Hypothesis: Effect is due to uncertainty over continuations

UPCOMING MATERIAL AFFECTS PROCESSING

Angele et al. (2015)

Lexical frequency of the upcoming masked word affects processing Hypothesis: Effect is due to uncertainty over continuations

Problem: Uncertainty is expensive to calculate

Entropy measures uncertainty

Shannon (1948)

$$
\begin{equation*}
H(X) \stackrel{\text { def }}{=}-\sum_{x \in X} P(x) \log P(x) \tag{1}
\end{equation*}
$$

Entropy measures uncertainty

Shannon (1948)

$$
\begin{equation*}
H(X) \stackrel{\text { def }}{=}-\sum_{x \in X} P(x) \log P(x) \tag{1}
\end{equation*}
$$

Roark et al. (2009) distinguishes two kinds of entropy (over words and preterminals)

$$
\begin{align*}
& \operatorname{LexH}\left(w_{1 . . i-1}\right) \stackrel{\text { def }}{=}-\sum_{w_{i} \in V} P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \log P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \tag{2}\\
& \operatorname{SynH}\left(w_{1 . . i-1}\right) \stackrel{\text { def }}{=}-\sum_{p_{i} \in G} P_{G}\left(p_{i} \mid w_{1 . . i-1}\right) \log P_{G}\left(p_{i} \mid w_{1 . . i-1}\right) \tag{3}
\end{align*}
$$

Entropy measures uncertainty

Roark et al. (2009) showed

- SynH predicts self-paced reading times
- LexH is not predictive of SPR times

Entropy measures uncertainty

Roark et al. (2009) showed

- SynH predicts self-paced reading times
- LexH is not predictive of SPR times (No Angele et al., 2015, effect)

Entropy measures uncertainty

Roark et al. (2009) showed

- SynH predicts self-paced reading times
- LexH is not predictive of SPR times (No Angele et al., 2015, effect)

But

- Small training corpus (V is poor)
- Small test corpus:
~ 200 sentences, ~ 4000 words, 23 subjects

TEST DATA IN THIS WORK

Natural Stories self-paced reading corpus (Futrell et al., in prep)

- 181 subjects
- 10 narrative texts
- 485 sentences (10256 words)
- Each text followed by 6 comprehension questions
- Events removed if $<100 \mathrm{~ms}$ or $>3000 \mathrm{~ms}$

Parsed using Roark (2001) parser
Fitted with Imer

SpACES WERE MASKED

SPACES WERE MASKED

A ------------------------

SPACES WERE MASKED

- child ------------------

SPACES WERE MASKED

------- annoyed

SPACES WERE MASKED

--------------- the -----

SpACES WERE MASKED

------------------- fish.

SYNTACTIC ENTROPY PREDICTS RTS

Replication of Roark et al. (2009)

SYNTACTIC ENTROPY PREDICTS RTS

Replication of Roark et al. (2009)
But Angele et al. (2015) found a lexical frequency effect

Van Schijndel

CAN WE MAKE LEXH MORE TRACTABLE?

$$
\begin{gather*}
S_{G}\left(w_{i}, w_{1 . . i-1}\right) \stackrel{\operatorname{def}}{=}-\log P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \tag{4}\\
\operatorname{Lex} H_{G}\left(w_{1 ., i-1}\right) \tag{5}\\
\stackrel{\text { def }}{=} \sum_{w_{i} \in V}-P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \log P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \tag{6}\\
=\sum_{w_{i} \in V} P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) S_{G}\left(w_{i}, w_{1 . . i-1}\right) \tag{7}\\
=E\left[S_{G}\left(w_{i}, w_{1 . . i-1}\right)\right]
\end{gather*}
$$

CAN WE MAKE LEXH MORE TRACTABLE?

$$
\begin{gather*}
S_{G}\left(w_{i}, w_{1 . . i-1}\right) \stackrel{\operatorname{def}}{=}-\log P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \tag{4}\\
\operatorname{Lex} H_{G}\left(w_{1 . . i-1}\right) \tag{5}\\
\stackrel{\text { def }}{=} \sum_{w_{i} \in V}-P_{G}\left(w_{i} \mid w_{1 . i-1}\right) \log P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) \tag{6}\\
=\sum_{w_{i} \in V} P_{G}\left(w_{i} \mid w_{1 . . i-1}\right) S_{G}\left(w_{i}, w_{1 . . i-1}\right) \tag{7}\\
=E\left[S_{G}\left(w_{i}, w_{1 . . i-1}\right)\right]
\end{gather*}
$$

We can use a corpus instead of explicitly computing the expectation

ENTROPY GIVES MEAN SURPRISAL

SURPRISAL APPROXIMATES ENTROPY IN THE AGGREGATE

Ex: The boy annoyed the fish.

SURPRISAL APPROXIMATES ENTROPY IN THE AGGREGATE

We can treat large corpora as our samplers.

POSSIBLE ENTROPY APPROXIMATIONS

We can try:

- Future Roark surprisal
(same distribution as SynH)

POSSIBLE ENTROPY APPROXIMATIONS

We can try:

- Future Roark surprisal (same distribution as SynH)
- Future 5-gram Surprisal (similar to what Angele et al., observed)

POSSIBLE ENTROPY APPROXIMATIONS

We can try:

- Future Roark surprisal (same distribution as SynH)
- Future 5-gram Surprisal (similar to what Angele et al., observed)
- Future categorial grammar surprisal (tests how specific syntactic prediction is)

Future surprisal predicts RTs

Uncertainty over both words and syntax

UNCERTAINTY OVER BOTH WORDS AND SYNTAX

Uncertainty over both words and syntax

Support for Angele et al. hypothesis

WHY DOES THIS PRE-SLOWING OCCUR?

- Better encoding of w_{i} to help with w_{i+1}

WHY DOES THIS PRE-SLOWING OCCUR?

- Better encoding of w_{i} to help with w_{i+1}
- A kind of Uniform Information Density (UID; Jaeger, 2010)
- Optimizes per-millisecond informativity

Can this approximation method be used with accumulation? (eye-tracking)

AcCuMULATED FUTURE SURPRISAL WORKS

SUCCESSOR N-GRAMS HAVE LIMITED INFLUENCE

SUCCESSOR N-GRAMS HAVE LIMITED INFLUENCE

Successor n-grams are most predictive for 2 future ET words ($p<0.001$)

SUCCESSOR N-GRAMS HAVE LIMITED INFLUENCE

Successor n-grams are most predictive for 2 future ET words ($p<0.001$) 6% of UCL saccades $(n=3500)>2$ words

SUCCESSOR N-GRAMS HAVE LIMITED INFLUENCE

Successor n-grams are most predictive for 2 future ET words ($p<0.001$) 6% of UCL saccades $(n=3500)>2$ words

Successor n-grams are most predictive for 1 SPR word ($p<0.001$)

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times
- PCFG surprisal does not accumulate

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times
- PCFG surprisal does not accumulate
- Upcoming Material

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times
- PCFG surprisal does not accumulate
- Upcoming Material
- Uncertainty about upcoming words slows processing

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times
- PCFG surprisal does not accumulate
- Upcoming Material
- Uncertainty about upcoming words slows processing
- That influence can be detected prior to any expectation violation

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times
- PCFG surprisal does not accumulate
- Upcoming Material
- Uncertainty about upcoming words slows processing
- That influence can be detected prior to any expectation violation
- Future surprisal can efficiently approximate that uncertainty

Conclusions

- Skipped Material in eye-tracking
- N-gram surprisal should be accumulated to predict reading times
- PCFG surprisal does not accumulate
- Upcoming Material
- Uncertainty about upcoming words slows processing
- That influence can be detected prior to any expectation violation
- Future surprisal can efficiently approximate that uncertainty
- Syntactic uncertainty is fine-grained

Thanks! Questions?

This work was done with William Schuler Thanks to:

- Stefan Frank, Klinton Bicknell
- The reviewers for their very helpful comments
- National Science Foundation (DGE-1343012)

Successor N-GRAMS

The red apple that the girl ate ...
future-n-gram $\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)$

SUCCESSOR N-GRAMS

The red apple that the girl ate ...
future-n-gram $\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)$

Successor N-GRAMS

The red apple that the girl ate ...

future-n-gram $\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)$

Successor N-Grams

The red apple that the girl ate ...

future-n-gram $\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log P\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)$

Successor N-Grams

The red $\stackrel{1}{ } \stackrel{2}{ }$ apple that the girl ate ...

$$
\text { future-n-gram }\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log \mathrm{P}\left(w_{i} \mid w_{i-n} \ldots w_{i-1}\right)
$$

SUCCESSOR PCFG SURPRISAL

Future-PCFG $\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)$

SUCCESSOR PCFG SURPRISAL

$$
\text { Future-PCFG }\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)
$$

SUCCESSOR PCFG SURPRISAL

$$
\text { Future-PCFG }\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)
$$

SUCCESSOR PCFG SURPRISAL

Future-PCFG $\left(w, f_{t}, f_{t+1}\right)=\sum_{i=f_{t}}^{f_{t+1}}-\log P\left(T_{i}=w_{i} \mid T_{1} \ldots T_{i-1}=w_{1} \ldots w_{i-1}\right)$

