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1 The frequencies of skipped material affect linguistic processing
2 Upcoming frequencies affect linguistic processing
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Overview

• Surprisal (PCFG, N-gram) is a way to estimate text complexity

• Experienced complexity is reflected in reading speed

Claim:
Current surprisal models inadequately estimate reading complexity

This work:
Shows that material skipped by saccades slows reading
Presents a simple way for surprisal to address that complexity
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Reading complexity is estimated based on region ending

The
1
red apple that the

2
girl ate …

Reading model of ‘girl’:
sentence position, word length, P(girl|the)
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Surprisal: probability of observation given context

This study: n-gram and PCFG surprisal
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Accumulated surprisal fixes the theoretical problem

Cumulative N-gram Surprisal

The
1
red apple that the

2
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Accumulated surprisal fixes the theoretical problem

Cumulative PCFG Surprisal
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How well does this fix work?

N-gram surprisal

• 5-grams
• Trained on Gigaword 3.0 (Graff and Cieri, 2003)
• Computed with KenLM (Heafield et al., 2013)

PCFG surprisal

• Trained on WSJ 02-21 (Marcus et al., 1993)
• Computed with van Schijndel et al., (2013) parser
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How well does this fix work?

University College London (UCL) Corpus (Frank et al., 2013)

• 43 subjects
• reading 361 short sentences from online novels
• frequent comprehension questions
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How well does this fix work?

Baseline mixed effects model

Fixed Factors

• sentence position
• word length
• region length
• whether the previous word was fixated

Random Factors

• All fixed factors as by-subject random slopes
• Item, subject and subject×sentence intercepts
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Accumulation improves n-gram surprisal
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Accumulation does not help PCFG surprisal

***
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What does accumulation model?
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Possible accumulation influences

Subsequent regression

The
1
red apple that the girl ate …

van Schijndel Unseen statistics September 8, 2017 16 / 47



Possible accumulation influences

Subsequent regression

The
1
red apple that the

2
girl ate …

van Schijndel Unseen statistics September 8, 2017 16 / 47



Possible accumulation influences

Subsequent regression

The
1
red

3
apple that the

2
girl ate …

van Schijndel Unseen statistics September 8, 2017 16 / 47



Possible accumulation influences

Subsequent regression

The
1
red

3
apple

4
that the

2
girl ate …

van Schijndel Unseen statistics September 8, 2017 16 / 47



Possible accumulation influences

Subsequent regression

The
1
red

3
apple

4
that the

2
girl

5
ate …

van Schijndel Unseen statistics September 8, 2017 16 / 47



Possible accumulation influences

Inference

The
1
red apple that the girl ate …
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Possible accumulation influences

Parafovial processing

The
1
red apple that the girl ate …
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Possible accumulation influences

Prediction (entropy)

The
1
red apple that the girl ate …
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Accumulation alternative: Successor surprisal

Cumulative surprisal handles regression and inference

Parafovial: Th(e
1
red apple that t)he

2
girl ate …

Prediction: The
1
red (apple that the︸ ︷︷ ︸

accumulated

2
girl) ate …

Other accumulation mechanisms presuppose earlier accumulation
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How much influence does upcoming material have?
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Successor effects influence reading times

Upcoming material influences reading times

• Orthographic effects
(Pynte, Kennedy, & Ducrot, 2004; Angele, Tran, & Rayner, 2013)

• Lexical effects
(Kliegl et al., 2006; Li et al., 2014; Angele et al., 2015)
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Upcoming material affects processing

Angele et al. (2015)

A
∗

child XXXXXXX the fish
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Upcoming material affects processing

Angele et al. (2015)
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A child annoyed
∗
the XXXX

Lexical frequency of the upcoming masked word affects processing

Hypothesis: Effect is due to uncertainty over continuations

Problem: Uncertainty is expensive to calculate
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Entropy measures uncertainty

Shannon (1948)
H(X) def= −

∑
x∈X

P(x)log P(x) (1)

Roark et al. (2009) distinguishes two kinds of entropy
(over words and preterminals)

LexH(w1..i−1)
def
= −

∑
wi∈V

PG(wi | w1..i−1)log PG(wi | w1..i−1) (2)

SynH(w1..i−1)
def
= −

∑
pi∈G

PG(pi | w1..i−1)log PG(pi | w1..i−1) (3)
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Entropy measures uncertainty

Roark et al. (2009) showed

• SynH predicts self-paced reading times
• LexH is not predictive of SPR times

(No Angele et al., 2015, effect)

But

• Small training corpus (V is poor)
• Small test corpus:

∼ 200 sentences, ∼ 4000 words, 23 subjects
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Test data in this work

Natural Stories self-paced reading corpus (Futrell et al., in prep)

• 181 subjects
• 10 narrative texts
• 485 sentences (10256 words)
• Each text followed by 6 comprehension questions
• Events removed if <100 ms or >3000 ms

Parsed using Roark (2001) parser

Fitted with lmer
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Spaces were masked

-------------------------
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Spaces were masked

------- annoyed ---------
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Spaces were masked

--------------- the -----
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Spaces were masked

------------------- fish.
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Syntactic entropy predicts RTs

***
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Replication of Roark et al. (2009)

But Angele et al. (2015) found a lexical frequency effect
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Can we make LexH more tractable?

SG(wi,w1..i−1)
def
= −log PG(wi | w1..i−1) (4)

LexHG(w1..i−1)
def
=

∑
wi∈V

−PG(wi | w1..i−1) log PG(wi | w1..i−1) (5)

=
∑
wi∈V

PG(wi | w1..i−1) SG(wi,w1..i−1) (6)

= E[SG(wi,w1..i−1)] (7)

We can use a corpus instead of explicitly computing the expectation

van Schijndel Unseen statistics September 8, 2017 32 / 47



Can we make LexH more tractable?

SG(wi,w1..i−1)
def
= −log PG(wi | w1..i−1) (4)

LexHG(w1..i−1)
def
=

∑
wi∈V

−PG(wi | w1..i−1) log PG(wi | w1..i−1) (5)

=
∑
wi∈V

PG(wi | w1..i−1) SG(wi,w1..i−1) (6)

= E[SG(wi,w1..i−1)] (7)

We can use a corpus instead of explicitly computing the expectation

van Schijndel Unseen statistics September 8, 2017 32 / 47



Entropy gives mean surprisal
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Surprisal approximates entropy in the aggregate
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Surprisal approximates entropy in the aggregate

Ex: The boy annoyed the fish.
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Surprisal approximates entropy in the aggregate

We can treat large corpora as our samplers.
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Possible entropy approximations

We can try:

• Future Roark surprisal
(same distribution as SynH)

• Future 5-gram Surprisal
(similar to what Angele et al., observed)

• Future categorial grammar surprisal
(tests how specific syntactic prediction is)
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Future surprisal predicts RTs
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Uncertainty over both words and syntax
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Uncertainty over both words and syntax
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Support for Angele et al. hypothesis
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Why does this pre-slowing occur?

• Better encoding of wi to help with wi+1

• A kind of Uniform Information Density (UID; Jaeger, 2010)
• Optimizes per-millisecond informativity
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Can this approximation method be used with accumulation?
(eye-tracking)
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Accumulated future surprisal works

***
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Successor n-grams have limited influence

Successor n-grams are most predictive for 2 future ET words (p < 0.001)

6% of UCL saccades (n=3500) >2 words

Successor n-grams are most predictive for 1 SPR word (p < 0.001)
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Thanks! Questions?

This work was done with William Schuler

Thanks to:

• Stefan Frank, Klinton Bicknell
• The reviewers for their very helpful comments
• National Science Foundation (DGE-1343012)

van Schijndel Unseen statistics September 8, 2017 45 / 47



Successor N-grams

The
1
red apple that the

2
girl ate …

future-n-gram(w, ft, ft+1) =
ft+1∑
i=ft

−log P(wi | wi−n . . .wi−1)
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