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preaching to the choir

Occurrence frequencies have major influence on sentence processing

H0 demands that we then control for these factors in our studies

How do people try to account for frequencies?
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Case Study 1: Cloze Probabilities
van Schijndel, Culicover, & Schuler (2014)

Pertains to: Pickering & Traxler (2003), inter alia
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generation/cloze probabilities

Ask subjects to generate distribution

Sentence generation norming:
Write sentences with these words

landed, sneezed, laughed, …

Cloze norming:
Complete this sentence

NP:

The pilot landed

PP:

The pilot landed in the field.

25% 40%
Pickering & Traxler (2003) used 6 cloze tasks to determine frequencies
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pickering & traxler (2003)

Stimuli

(1) That’s the plane that the pilot landed behind in the fog.
(2) That’s the truck that the pilot landed behind in the fog.

Readers slow down at landed in (2)

Suggests they try to link truck as the object of landed despite:

• landed biased for PP complement
• 40% PP complement
• 25% NP complement
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pickering & traxler (2003)

Readers initially adopt a transitive interpretation despite subcat bias

∴ Early-attachment processing heuristic

But what about syntactic frequencies?
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generalized categorial grammar (gcg)

Nguyen et al. (2012)

....N.....

..A-aN.....

..V-gN.....

..V-aN-gN...

..V-aN-bN...

..ate.

..

..N.....

..N-aD...

..girl.

..

..D...

..the

.

..

..N-rN...

..that.

..

..N.....

..N-aD...

..apple.

..

..D...

..the
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what about syntactic frequencies?

Pickering & Traxler (2003)

(1) That’s the plane that the pilot landed behind in the fog.
(2) That’s the truck that the pilot landed behind in the fog.

(a) ....VP-gNP.....

..PP.....

..NP

.

..

..P...

..behind.

..

..VP-gNP.....

..ti

.

..

..TV...

..landed

(b) ....VP-gNP.....

..PP-gNP.....

..ti

.

..

..P...

..behind.

..

..VP...

..IV...

..landed
Transitive Intransitive
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what about syntactic frequencies?

Pickering & Traxler (2003)

(1) That’s the plane that the pilot landed behind in the fog.
(2) That’s the truck that the pilot landed behind in the fog.

van Schijndel et al. (2014)
Using syntactic probabilities with cloze data:

P(Transitive | landed) ∝ 0.016
P(Intransitive | landed) ∝ 0.004

Transitive interpretation is 300% more likely!

van Schijndel Confounds in complexity July 28, 2015 10 / 56



what about syntactic frequencies?

Pickering & Traxler (2003)

(1) That’s the plane that the pilot landed behind in the fog.
(2) That’s the truck that the pilot landed behind in the fog.

van Schijndel et al. (2014)
Using syntactic probabilities with cloze data:

P(Transitive | landed) ∝ 0.016
P(Intransitive | landed) ∝ 0.004

Transitive interpretation is 300% more likely!

van Schijndel Confounds in complexity July 28, 2015 10 / 56



what about syntactic frequencies?

Pickering & Traxler (2003)

(1) That’s the plane that the pilot landed behind in the fog.
(2) That’s the truck that the pilot landed behind in the fog.

van Schijndel et al. (2014)
Using syntactic probabilities with cloze data:

P(Transitive | landed) ∝ 0.016
P(Intransitive | landed) ∝ 0.004

Transitive interpretation is 300% more likely!
van Schijndel Confounds in complexity July 28, 2015 10 / 56



results: case study 1

Subcat processing accounted for by hierarchic syntactic frequencies
Early attachment heuristic unnecessary

Also applies to heavy-NP shift heuristics (Staub, 2006), unaccusative
processing (Staub et al., 2007), etc.

Suggests cloze probabilities are insufficient as a frequency control

But do people use hierarchic syntactic probabilities?
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Case Study 2: N-grams and Syntactic Probabilities
van Schijndel & Schuler (2015)

Pertains to: Frank & Bod (2011), inter alia
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case study 2: overview

Previous studies have debated whether humans use hierarchic syntax

....NP.....

..RC.....

..VP.....

..V...

..ate

.

..

..NP.....

..N...

..girl.

..

..D...

..the

.

..

..IN...

..that.

..

..NP.....

..N...

..apple.

..

..D...

..the

But how robust were their models?

van Schijndel Confounds in complexity July 28, 2015 13 / 56



case study 2: overview

Previous studies have debated whether humans use hierarchic syntax

....NP.....

..RC.....

..VP.....

..V...

..ate

.

..

..NP.....

..N...

..girl.

..

..D...

..the

.

..

..IN...

..that.

..

..NP.....

..N...

..apple.

..

..D...

..the

But how robust were their models?

van Schijndel Confounds in complexity July 28, 2015 13 / 56



case study 2: overview

Previous studies have debated whether humans use hierarchic syntax

....NP.....

..RC.....

..VP.....

..V...

..ate

.

..

..NP.....

..N...

..girl.

..

..D...

..the

.

..

..IN...

..that.

..

..NP.....

..N...

..apple.

..

..D...

..the

But how robust were their models?
van Schijndel Confounds in complexity July 28, 2015 13 / 56



case study 2: overview

This work shows that:

N-gram models can be greatly improved (accumulation)

Hierarchic syntax is still predictive over stronger baseline

Hierarchic syntax not improved by accumulation
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hierarchic syntax in reading?

The
1
red apple that the

2
girl ate …

Frank & Bod (2011)

Baseline:
• Sentence Position
• Word length
• N-grams (Unigram, bigram)

Test POS Predictors:
• Echo State Network (ESN)
• Phrase Structure Grammar (PSG)
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hierarchic syntax in reading?

....DT ..ADJ ..NN ..IN ..DT ..NN ..VBD ..….....

Frank & Bod (2011)
Baseline:

• Sentence Position
• Word length
• N-grams (Unigram, bigram)

Test POS Predictors:
• Echo State Network (ESN)
• Phrase Structure Grammar (PSG)
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hierarchic syntax in reading?

Frank & Bod (2011)
Baseline:

• Sentence Position
• Word length
• N-grams (Unigram, bigram)

Test POS Predictors:
• Echo State Network (ESN)
• Phrase Structure Grammar (PSG)

Outcome:
PSG < ESN + PSG

Sequential helps over hierarchic

ESN = ESN + PSG

Hierarchic doesn’t help over sequential
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hierarchic syntax in reading?

Fossum & Levy (2012)

Replicated Frank & Bod (2011):
PSG < ESN + PSG
ESN = ESN + PSG

Better n-gram baseline (more data) changes result:
PSG = ESN + PSG

Sequential doesn’t help over hierarchic

ESN = ESN + PSG

Also: lexicalized syntax improves PSG fit
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improved n-gram baseline

Previous reading time studies:

• Unigrams/Bigrams/Trigrams
Trained on WSJ, Dundee, BNC

• Only from region boundaries
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improved n-gram baseline

Bigram Example

Reading time of girl after red

The
1
red apple that the

2
girl︸ ︷︷ ︸

region

ate …

X : bigram target X: bigram condition

• Fails to capture entire sequence;
• Conditions never generated;
• Probability of sequence is deficient
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improved n-gram baseline

Cumulative Bigram Example

Reading time of girl after red:

The
1
red apple that the

2
girl ate …

X : bigram targets X: bigram conditions

• Captures entire sequence;
• Well-formed sequence probability;
• Reflects processing that must be done by humans
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improved n-gram baseline

Previous reading time studies:

• Unigrams/Bigrams/Trigrams
• Trained on WSJ, Dundee, BNC
• Only from region boundaries

This study:

• 5-grams (w/ backoff)
• Trained on Gigaword 4.0
• Cumulative and Non-cumulative
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evaluation

Dundee Corpus (Kennedy et al., 2003)

• 10 subjects
• 2,388 sentences
• 58,439 words
• 194,882 first pass durations
• 193,709 go-past durations

Exclusions:

• Unknown words (5 tokens)
• First and last of a line
• Regions larger than 4 words (track loss)
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cumu-n-grams predict reading times

Baseline:
Fixed Effects

• Sentence Position
• Word length
• Region Length
• Preceding word fixated?

Random Effects
• Item/Subject Intercepts
• By Subject Slopes:

• All Fixed Effects
• N-grams (5-grams)

←

• N-grams (Cumu-5-grams)

←
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cumu-n-grams predict reading times

First Pass and Go-Past

van Schijndel Confounds in complexity July 28, 2015 24 / 56



follow-up questions

• Is hierarchic surprisal useful over the better baseline?

• If so, can it be similarly improved through accumulation?
van Schijndel & Schuler (2013) found it could over weaker baselines

Grammar:
Berkeley parser, WSJ, 5 split-merge cycles (Petrov & Klein 2007)
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hierarchic surprisal predicts reading times

Baseline:
Fixed Effects

• Same as before
• N-grams (5-grams)
• N-grams (Cumu-5-grams)

Random Effects
• Same as before
• By Subject Slopes:

• Hierarchic surprisal

←

• Cumu-Hierarchic surprisal

←
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hierarchic surprisal predicts reading times

First Pass and Go-Past
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cumulative surprisal doesn’t help?!

• Suggests previous findings were due to weaker n-gram baseline

• Suggests only local PCFG surprisal affects reading times

Follow-up work shows long distance dependencies independently
influence reading times
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results: case study 2

Hierarchic syntax predicts reading times over strong linear baseline

Studies should use cumu-n-grams in their baselines

van Schijndel Confounds in complexity July 28, 2015 29 / 56



results: case study 2

Hierarchic syntax predicts reading times over strong linear baseline

Studies should use cumu-n-grams in their baselines

van Schijndel Confounds in complexity July 28, 2015 29 / 56



what does this mean for our models?

We need to carefully control for:

• Cloze probabilities

• N-gram frequencies (local and cumulative)
• Hierarchic syntactic frequencies
• Long distance dependency frequencies
• …(discourse, etc.)

Then we can try to interpret experimental results.

What do we do about convergence?
Is there a way to avoid this explosion of control predictors?
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Case Study 3: Evading Frequency Confounds
van Schijndel, Murphy, & Schuler (2015)
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motivating question

Can we measure memory load without controlling for frequency
effects?

Let’s try using MEG.
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what is meg?

102 locations
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how might meg reflect load?

Jensen et al., (2012)
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where to look?

Memory is a function of distributed processing

Look for synchronized firing between sensors (brain regions)

van Schijndel Confounds in complexity July 28, 2015 36 / 56



where to look?

Memory is a function of distributed processing

Look for synchronized firing between sensors (brain regions)

van Schijndel Confounds in complexity July 28, 2015 36 / 56



where to look?
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where to look?

Memory is a function of distributed processing

Look for synchronized firing between sensors (brain regions)

This study uses spectral coherence measurements.
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spectral coherence

coherence(x, y) = E[Sxy]√
E[Sxx] · E[Syy]

← cross-correlation
← autocorrelations

Amount of connectivity (synchronization) not caused by chance
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spectral coherence: phase synchrony

Fell & Axmacher (2011)
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audiobook meg corpus

Collected 2 years ago at CMU

3 subjects

Heart of Darkness, ch. 2
12,342 words
80 (8 x 10) minutes
Synched with parallel audio recording
and forced alignment

306-channel Elekta Neuromag, CMU
Movement/noise correction: SSP, SSS, tSSS
Band-pass filtered 0.01–50 Hz
Downsampled to 125 Hz
Visually scanned for muscle artifacts; none found
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memory load via center embedding

d1 The cart broke.
d2 that the man bought

Depth annotations:
van Schijndel et al., (2013) parser
Nguyen et al., (2012) Generalized Categorial Grammar (GCG)

van Schijndel Confounds in complexity July 28, 2015 42 / 56



memory load via center embedding

d1 The cart broke.
d2 that the man bought

Depth annotations:
van Schijndel et al., (2013) parser
Nguyen et al., (2012) Generalized Categorial Grammar (GCG)

van Schijndel Confounds in complexity July 28, 2015 42 / 56



data filtering

Remove words:

• in short or long sentences (<4 or >50 words)
• that follow a word at another depth
• that fail to parse

Partition data:

• Dev set: One third of corpus
• Test set: Two thirds of corpus
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compute coherence

• Group by factor
• Compute coherence over subsets of 4 epochs
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dev coherence

...

Coherence (d2 − d1)
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dev coherence +variance
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possible confounds?

Sentence position

Unigram, Bigram, Trigram: COCA logprobs

PCFG surprisal: parser output

van Schijndel Confounds in complexity July 28, 2015 47 / 56



dev results

Factor p-value
Unigram 0.941
Bigram 0.257
Trigram 0.073
PCFG Surprisal 0.482
Sentence Position 0.031
Depth 0.005

Depth 1 (40 items) Depth 2 (1118 items)
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test results

Factor p-value
Unigram 0.6480
Bigram 0.7762
Trigram 0.0264
PCFG Surprisal 0.3295
Sentence Position 0.4628
Depth 0.00002

Depth 1 (86 items) Depth 2 (2142 items)
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test results

Factor p-value
Unigram 0.6480
Bigram 0.7762
Trigram 0.0264
PCFG Surprisal 0.3295
Sentence Position 0.4628
Depth 0.00002

Bonferroni correction removes trigrams, but …
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compute coherence: increased resolution

• Group by factor
• Compute coherence over subsets of 6 epochs
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test results: increased resolution

Factor p-value
Trigram 0.3817
Depth 0.0046

Depth 1 (57 items) Depth 2 (1428 items)
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results: case study 3

• Memory load is reflected in MEG connectivity
• Common confounds do not pose problems for oscillatory measures
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conclusions

• Cloze probabilities are insufficient as frequency control
• Hierarchic syntactic frequencies strongly influence processing
• Reading time studies need to use local and cumulative n-grams
• Oscillatory analyses could avoid control predictor explosion
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thanks! questions?

• Cloze probabilities are insufficient as frequency control
• Hierarchic syntactic frequencies strongly influence processing
• Reading time studies need to use local and cumulative n-grams
• Oscillatory analyses could avoid control predictor explosion
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