Prediction- and Recall-Defined Online Complexity Metrics

Marten van Schijndel Department of Linguistics The Ohio State University

December 5, 2012

MOTIVATION

Observation ISN'T EXPLANATION

Current metrics predict complexity with no cognitive explanation.

- Surprisal simply reflects corpus statistics.
- Entropy reduction and UID reflect interpreted corpus statistics.

GOAL: AN EXPLANATION

- Can current theories of working memory predict difficulty over extant complexity metrics?
- Provide a rationale for *why* humans have certain difficulties

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would ...

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg)

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg) The professor would ...

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg) The professor would though

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg) The professor would though Alice

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg) The professor would though Alice advised

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg) The professor would though Alice advised against it ...

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

The professor would (V, Neg) The professor would though Alice advised against it (V, Neg)

- People use prediction (Cloze task, filled-gap effect)
- Processing difficulty may stem from incorrect predictions
- A model of prediction may predict processing difficulty

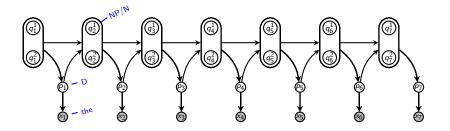
The professor would (V, Neg) The professor would though Alice advised against it (V, Neg)

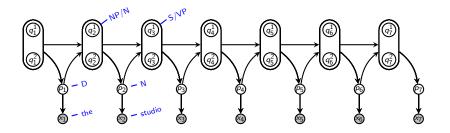
Assumption: Parallel processing (competing hypotheses)

CUEING PREDICTIONS

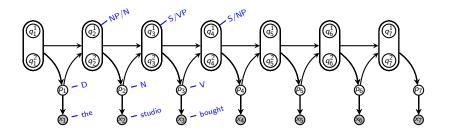
The professor would (V, Neg) The professor would though Alice advised against it (V, Neg)

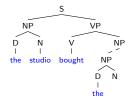
- Sequential (skilled, content-based) cueing [Botvinick, 2007]
- Temporal (context-based) cueing [Howard and Kahana, 2002]
- Naturally lends itself to center-embedding

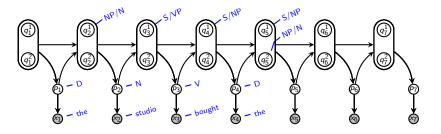




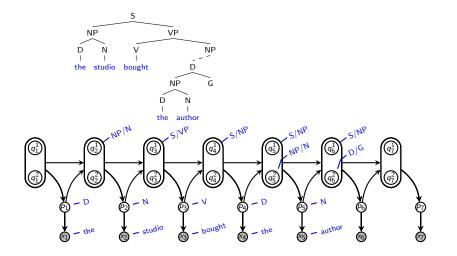
Marten van Schijndel ()



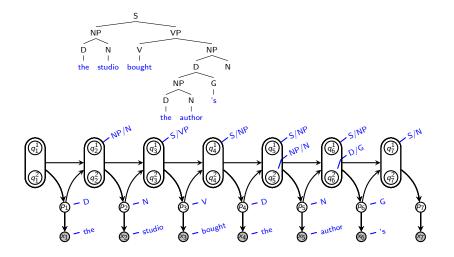


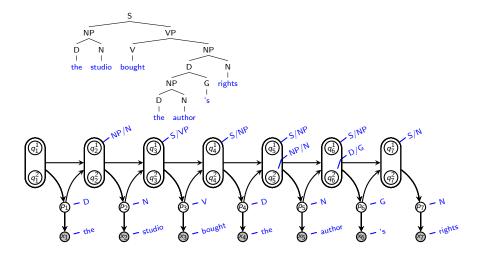


Marten van Schijndel ()



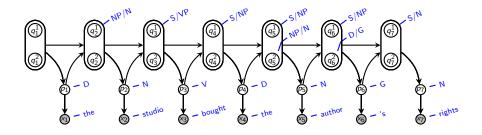
Marten van Schijndel ()





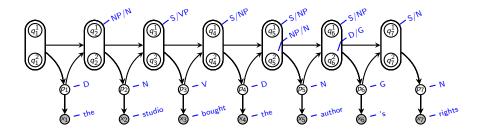
CUEING IN PARSING

- Sequential cueing is captured via active and awaited components
- Temporal cueing is captured via tiers of embeddedness
- Grammar formalism is sensitive to embedding depth



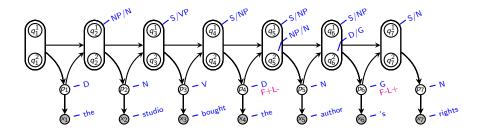
PARSER PREDICTIONS

- F(irst): Predict the first element of a new tier
- L(ast): Predict that the last element of a tier was just seen
- F and L binary predictions made at each timestep metrics



PARSER PREDICTIONS

- F(irst): Predict the first element of a new tier
- L(ast): Predict that the last element of a tier was just seen
- F and L binary predictions made at each timestep metrics



PROPOSED COMPLEXITY METRICS

Loosely correspond to Storage and Integration costs [Gibson, 2000]

- F+: Predict a new tier (incur a *storage* cost)
- DepF+: F+ weighted by the tier number
- L+: Predict integration of a tier (incur an *integration* cost)
- DepL+: L+ weighted by the tier number

- Reading times provide a window into complexity
- Many different metrics (fixation duration, regression, etc)

People fixate longer on difficult words People regress more after ambiguous words and difficult constructions

- Reading times provide a window into complexity
- Many different metrics (fixation duration, regression, etc)

People fixate longer on difficult words People regress more after ambiguous words and difficult constructions

Choice: Go-Past Duration.

TRAINING

- Parser and Lexicon: WSJ02-21 [Marcus et al., 1993]
 - 39,832 sentences
 - 950,028 words
- Ngrams: Brown [Francis and Kucera, 1979], WSJ02-21, BNC, Dundee[Kennedy et al., 2003]
 - 5,052,904 sentences
 - 87,302,312 words

Ngrams calculated using SRILM [Stolcke, 2002] with modified Kneser-Ney smoothing [Chen and Goodman, 1998]

EVALUATION

- Dundee corpus [Kennedy et al., 2003]
 - 10 subjects
 - 2,388 sentences
 - 58,439 words
 - 260,124 subject/word pairs (go-past durations)
- Filtered Dundee corpus
 - 154,168 words

Exclusions: UNK-threshold 5, first and last of a line, fixations skipping an entire line (track/attention loss)

BASELINE METRICS

Fitting a linear mixed effects model

Derived from [Fossum and Levy, 2012], [Frank and Bod, 2011], [Frank, ming]

- Number of characters
- Previous (next) word fixated?
- Unigram and Bigram probs

- Sentence position
- Joint interactions

Plus

- Spillover Predictors
- Number of intervening words

- Cum. Total Surprisal [Hale, 2001]
- Cum. Entropy Reduction [Hale, 2003]

Durations are log-transformed prior to fitting to yield more normal distributions

MARTEN VAN SCHIJNDEL ()

RESULTS

Metrics residualized from baseline

Model	t-s	core	p-value		Model		t-scor	e	p-value
F-L-	3.13		.0017		F+		_		-
F+L-	2.76		.0058		DepF+		_		-
F-L+	-3.16		.0016		L+		-3.68		.0002
F+L+		_	-		DepL+		-4.47		$8 \cdot 10^{-6}$
	Model		t	-score p-valu		value			
		DepF+L-		-			_		
		DepF–L+			-3.81	.0001			
		DepF+L+			_		-		

Significance of Improvement over Baseline

MARTEN VAN SCHIJNDEL ()

Complexity Metrics

DISCUSSION

CORROBORATES

- Antilocality in ACT-R [Vasishth and Lewis, 2006]
- Embedding difference [Wu et al., 2010]

Possible Explanations

- Processing 'momentum' [Just and Varma, 2007]
- Increased resting activation

CONCLUSION

AN EXPLANATION

- Some proposed metrics can predict reading times even over a strong baseline
- Indicates that domain-general memory processes provide at least a partial account of *why* language processing difficulties occur.

Plus

• Suggests antilocality effects present in English, too.

Fin

Thanks!

Especially to Kodi Weatherholtz and Rory Turnbull for their assistance with R-wrangling and working with linear mixed effect models! Additional thanks due to William Schuler for advising on this project. Any errors are my own.

Questions?

RESULTS: THE VILLAINS

Metrics residualized from baseline (w/o complexity) (w/FL)

Model	t-score	p-value	Model	t-score	p-value
Totsurp	_	$< 2.2 \cdot 10^{-16}$	Totsurp	_	$ < 2.2 \cdot 10^{-16}$
Totsurp _R	13.82	$< 2.2 \cdot 10^{-16}$	Totsurp _R	10.89	$< 2.2 \cdot 10^{-16}$
Lexsurp	_	$< 2.2 \cdot 10^{-16}$	Lexsurp	_	$< 2.2 \cdot 10^{-16}$
Lexsurp _R	13.26	$< 2.2 \cdot 10^{-16}$	Lexsurp _R	11.41	$< 2.2 \cdot 10^{-16}$
Synsurp	-	$1\cdot 10^{-6}$	Synsurp	-	_
Synsurp _R	3.21	.001	Synsurp _R	_	_
EntRed	-	-	EntRed	_	.04
$EntRed_R$	_	_	$EntRed_R$	_	.32

Significance of Improvement over Baseline

MARTEN VAN SCHIJNDEL ()

Complexity Metrics

FINDING THE SIMPLEST BASELINE MODEL

- Begin with all baseline effects thrown into model along with their joint interactions.
- Preduce multicollinearity: Using Variance Inflation Factors (VIFs), remove largest contributor to multicollinearity until loglikelihood of model is negatively affected (interactions removed first)
- Simplify model: Using t-scores, remove least significant factor until an ANOVA reveals a significant effect

PROBLEMS WITH MULTICOLLINEARITY

- Algorithms to determine coefficients fail or are inaccurate
- Results won't generalize to new populations
- Significance found will still be significant without collinearity but bias can lead to incorrect predictions on new data

SIMPLEST BASELINE MODEL

$\log(FDUR) \sim$

- nchar
- sentpos
- previsfix
- nrchar:logwordprob
- sentpos:nextisfix
- sentpos:logfwprob
- nextisfix:cumtotsurp
- subject and item random intercepts

- logprob
- logfwprob
- cumtotsurp
- previsfix:logprob
- previsfix:logfwprob
- previsfix:cumtotsurp
- logprob:cumtotsurp
- logfwprob:cumtotsurp

BIBLIOGRAPHY I

Botvinick, M. (2007).

Multilevel structure in behavior and in the brain: a computational model of Fuster's hierarchy.

Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 362:1615–1626.

- Chen, S. F. and Goodman, J. (1998).
 An empirical study of smoothing techniques for language modeling. Technical report, Harvard University.
- Fossum, V. and Levy, R. (2012). Sequential vs. hierarchical syntactic models of human incremental sentence processing.

In *Proceedings of CMCL 2012*. Association for Computational Linguistics.

BIBLIOGRAPHY II

Francis, W. N. and Kucera, H. (1979).

The brown corpus: A standard corpus of present-day edited american english.

Frank, S. (Forthcoming).

Uncertainty reduction as a measure of cognitive load in sentence comprehension.

Topics in Cognitive Science.

Frank, S. and Bod, R. (2011).

Insensitivity of the human sentence-processing system to hierarchical structure.

Psychological Science.

BIBLIOGRAPHY III

Gibson, E. (2000).

The dependency locality theory: A distance-based theory of linguistic complexity.

In Image, language, brain: Papers from the first mind articulation project symposium, pages 95–126, Cambridge, MA. MIT Press.

📄 Hale, J. (2001).

A probabilistic earley parser as a psycholinguistic model.

In Proceedings of the second meeting of the North American chapter of the Association for Computational Linguistics, pages 159–166, Pittsburgh, PA.

📔 Hale, J. (2003).

Grammar, Uncertainty and Sentence Processing. PhD thesis, Cognitive Science, The Johns Hopkins University.

BIBLIOGRAPHY IV

 Howard, M. W. and Kahana, M. J. (2002).
 A distributed representation of temporal context. Journal of Mathematical Psychology, 45:269–299.

Just, M. A. and Varma, S. (2007).

The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition.

Cognitive, Affective, & Behavioral Neuroscience, 7:153–191.

Kennedy, A., Pynte, J., and Hill, R. (2003).
 The Dundee corpus.
 In Proceedings of the 12th European conference on eye movement.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus of English: the Penn Treebank. *Computational Linguistics*, 19(2):313–330.

BIBLIOGRAPHY V

Roark, B. (2001). Probabilistic top-down parsing and language modeling. *Computational Linguistics*, 27(2):249–276.

Schuler, W. (2009).

Parsing with a bounded stack using a model-based right-corner transform.

In *Proceedings of NAACL/HLT 2009*, NAACL '09, pages 344–352, Boulder, Colorado. Association for Computational Linguistics.

Schuler, W., AbdelRahman, S., Miller, T., and Schwartz, L. (2010). Broad-coverage incremental parsing using human-like memory constraints.

Computational Linguistics, 36(1):1–30.

BIBLIOGRAPHY VI

Stolcke, A. (2002).

Srilm - an extensible language modeling toolkit.

In Seventh International Conference on Spoken Language Processing.

Vasishth, S. and Lewis, R. L. (2006). Argument-head distance and processing complexity: Explaining both locality and antilocality effects. *Language*, 82(4):767–794.

 Wu, S., Bachrach, A., Cardenas, C., and Schuler, W. (2010).
 Complexity metrics in an incremental right-corner parser.
 In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL'10), pages 1189–1198.