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Motivation

Observation isn’t explanation

Current metrics predict complexity with no cognitive explanation.

• Surprisal simply reflects corpus statistics.

• Entropy reduction and UID reflect interpreted corpus statistics.

Goal: An Explanation

• Can current theories of working memory predict difficulty over extant
complexity metrics?

• Provide a rationale for why humans have certain difficulties
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A Model of Prediction

• People use prediction (Cloze task, filled-gap effect)

• Processing difficulty may stem from incorrect predictions

• A model of prediction may predict processing difficulty

The professor would

(V, Neg)
The professor would though Alice advised against it (V, Neg)

Assumption: Parallel processing (competing hypotheses)
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Cueing Predictions

The professor would (V, Neg)
The professor would though Alice advised against it (V, Neg)

• Sequential (skilled, content-based) cueing [Botvinick, 2007]

• Temporal (context-based) cueing [Howard and Kahana, 2002]

• Naturally lends itself to center-embedding
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Cueing in Parsing

• Sequential cueing is captured via active and awaited components

• Temporal cueing is captured via tiers of embeddedness

• Grammar formalism is sensitive to embedding depth
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Parser Predictions

• F(irst): Predict the first element of a new tier

• L(ast): Predict that the last element of a tier was just seen

• F and L binary predictions made at each timestep metrics
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Proposed Complexity Metrics

Loosely correspond to Storage and Integration costs [Gibson, 2000]

• F+: Predict a new tier (incur a storage cost)

• DepF+: F+ weighted by the tier number

• L+: Predict integration of a tier (incur an integration cost)

• DepL+: L+ weighted by the tier number
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Human Complexity

• Reading times provide a window into complexity

• Many different metrics (fixation duration, regression, etc)

People fixate longer on difficult words
People regress more after ambiguous words and difficult constructions

Choice: Go-Past Duration.
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Training

• Parser and Lexicon: WSJ02-21 [Marcus et al., 1993]
• 39,832 sentences
• 950,028 words

• Ngrams: Brown [Francis and Kucera, 1979], WSJ02-21, BNC,
Dundee[Kennedy et al., 2003]

• 5,052,904 sentences
• 87,302,312 words

Ngrams calculated using SRILM [Stolcke, 2002] with modified Kneser-Ney
smoothing [Chen and Goodman, 1998]
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Evaluation

• Dundee corpus [Kennedy et al., 2003]
• 10 subjects
• 2,388 sentences
• 58,439 words
• 260,124 subject/word pairs (go-past durations)

• Filtered Dundee corpus
• 154,168 words

Exclusions: UNK-threshold 5, first and last of a line, fixations skipping an
entire line (track/attention loss)
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Baseline Metrics
Fitting a linear mixed effects model

Derived from [Fossum and Levy, 2012],
[Frank and Bod, 2011], [Frank, ming]

• Number of characters

• Previous (next) word fixated?

• Unigram and Bigram probs

• Sentence position

• Joint interactions

Plus

• Spillover Predictors

• Number of intervening words

• Cum. Total Surprisal
[Hale, 2001]

• Cum. Entropy Reduction
[Hale, 2003]

Durations are log-transformed prior to fitting to yield more normal
distributions
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Results

Metrics residualized from baseline

Model t-score p-value

F–L– 3.13 .0017
F+L– 2.76 .0058
F–L+ -3.16 .0016
F+L+ – –

Model t-score p-value

F+ – –
DepF+ – –

L+ -3.68 .0002
DepL+ -4.47 8 · 10−6

Model t-score p-value

DepF+L– – –
DepF–L+ -3.81 .0001
DepF+L+ – –

Significance of Improvement over Baseline
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Discussion

Corroborates

• Antilocality in ACT-R [Vasishth and Lewis, 2006]

• Embedding difference [Wu et al., 2010]

Possible Explanations

• Processing ‘momentum’ [Just and Varma, 2007]

• Increased resting activation
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Conclusion

An explanation

• Some proposed metrics can predict reading times even over a strong
baseline

• Indicates that domain-general memory processes provide at least a
partial account of why language processing difficulties occur.

Plus

• Suggests antilocality effects present in English, too.
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Fin

Thanks!
Especially to Kodi Weatherholtz and Rory Turnbull for their assistance

with R-wrangling and working with linear mixed effect models!
Additional thanks due to William Schuler for advising on this project.

Any errors are my own.

Questions?
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Results: The Villains

Metrics residualized from baseline (w/o complexity) (w/FL)

Model t-score p-value

Totsurp – < 2.2 · 10−16

TotsurpR 13.82 < 2.2 · 10−16

Lexsurp – < 2.2 · 10−16

LexsurpR 13.26 < 2.2 · 10−16

Synsurp – 1 · 10−6

SynsurpR 3.21 .001

EntRed – –
EntRedR – –

Model t-score p-value

Totsurp – < 2.2 · 10−16

TotsurpR 10.89 < 2.2 · 10−16

Lexsurp – < 2.2 · 10−16

LexsurpR 11.41 < 2.2 · 10−16

Synsurp – –
SynsurpR – –

EntRed – .04
EntRedR – .32

Significance of Improvement over Baseline
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Finding the Simplest Baseline Model

1 Begin with all baseline effects thrown into model along with their joint
interactions.

2 Reduce multicollinearity: Using Variance Inflation Factors (VIFs),
remove largest contributor to multicollinearity until loglikelihood of
model is negatively affected (interactions removed first)

3 Simplify model: Using t-scores, remove least significant factor until an
ANOVA reveals a significant effect

Problems with multicollinearity

• Algorithms to determine coefficients fail or are inaccurate

• Results won’t generalize to new populations

• Significance found will still be significant without collinearity but bias
can lead to incorrect predictions on new data
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Simplest Baseline Model

log(fdur)∼

• nchar

• sentpos

• previsfix

• nrchar:logwordprob

• sentpos:nextisfix

• sentpos:logfwprob

• nextisfix:cumtotsurp

• subject and item random
intercepts

• logprob

• logfwprob

• cumtotsurp

• previsfix:logprob

• previsfix:logfwprob

• previsfix:cumtotsurp

• logprob:cumtotsurp

• logfwprob:cumtotsurp
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