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Abstract

Similarity measures are a vital tool for under-
standing how language models represent and
process language. Standard representational
similarity measures such as cosine similarity
and Euclidean distance have been successfully
used in static word embedding models to un-
derstand how words cluster in semantic space.
Recently, these measures have been applied to
embeddings from contextualized models such
as BERT and GPT-2. In this work, we call
into question the informativity of such mea-
sures for contextualized language models. We
find that a small number of rogue dimensions,
often just 1-3, dominate these measures. More-
over, we find a striking mismatch between the
dimensions that dominate similarity measures
and those which are important to the behavior
of the model. We show that simple postpro-
cessing techniques such as standardization are
able to correct for rogue dimensions and reveal
underlying representational quality. We argue
that accounting for rogue dimensions is essen-
tial for any similarity-based analysis of contex-
tual language models.

1 Introduction

By mapping words into continuous vector spaces,
we can reason about human language in geomet-
ric terms. For example, the cosine similarity of
pairs of word embeddings in Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014)
shows a robust correlation with human similarity
judgments, and embeddings cluster into natural se-
mantic classes in Euclidean space (Baroni et al.,
2014; Wang et al., 2019). In recent years, static
embeddings have given way to their contextual
counterparts, with language models based on the
transformer architecture (Vaswani et al., 2017) such
as BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2020), XLNet (Yang et al., 2019) and GPT-2 (Rad-
ford et al., 2019) achieving state of the art results on
many language understanding tasks. Despite their

success, relatively little is known about how these
models represent and process language. Recent
work has employed measures such as cosine sim-
ilarity and Euclidean distance to contextual repre-
sentations with unclear and counterintuitive results.
For example, similarity/distance measures in BERT
are extremely sensitive to word position, leading
to inconsistent results on evaluation benchmarks
(Mickus et al., 2020; May et al., 2019). Addition-
ally, representational quality appears to degrade
severely in later layers of each network, with the
final layers of BERT, RoBERTa, GPT-2 and XLNet
showing little to no correlation with the semantic
similarity/relatedness judgments of humans (Bom-
masani et al., 2020).

Recent work which probes the representational
geometry of contextualized embedding spaces us-
ing cosine similarity has found that contextual em-
beddings have several counterintuitive properties
(Ethayarajh, 2019). For example: 1) Word repre-
sentations are highly anisotropic: randomly sam-
pled words tend to be highly similar to one an-
other when measured by cosine similarity. In the
final layer of GPT-2 for example, any two words
are almost perfectly similar. 2) Embeddings have
extremely low self-similarity: In later layers of
transformer-based language models, random words
are almost as similar to one another as instances
the same word in different contexts.

In this work, we critically examine the infor-
mativity of standard similarity/distance measures
(particularly cosine similarity and Euclidean dis-
tance) in contextual embedding spaces. We find
that these measures are often dominated by 1-5 di-
mensions across all the contextual language models
we tested, regardless of the specific pretraining ob-
jective. It is this small subset of dimensions which
drive anisotropy, low self-similarity, and the appar-
ent drop in representational quality in later layers.
These dimensions, which we refer to as rogue di-
mensions are centered far from the origin and have



disproportionately high variance. The presence of
rogue dimensions can cause cosine similarity and
Euclidean distance to rely on less than 1% of the
embedding space. Moreover, we find that the rogue
dimensions which dominate cosine similarity do
not likewise dominate model behavior, and show a
strong correlation with absolute position and punc-
tuation.

Finally, we show that these dimensions can be
accounted for using a trivially simple transforma-
tion of the embedding space: standardization. Once
applied, cosine similarity more closely reflects hu-
man word similarity judgments, and we see that
representational quality is preserved across all lay-
ers rather than degrading/becoming task-specific.
Taken together, we argue that accounting for rogue
dimensions is essential when evaluating representa-
tional similarity in transformer language models.1

2 Background

Standard measures such as cosine similarity or Eu-
clidean distance in contextual embedding spaces
have been used in a wide range of applications:
to understand how the representational similarity
of word embedding spaces corresponds to human
semantic similarity/relatedness judgments (Bom-
masani et al., 2020; Vulić et al., 2020; Chronis
and Erk, 2020; A. Rodriguez and Merlo, 2020),
human brain activation patterns/cross-model simi-
larity (Abnar et al., 2019), syntax structure (Chru-
pała and Alishahi, 2019), semantic shift (Martinc
et al., 2020), compositionality/idomaticity of word
vectors (Garcia et al., 2021), polysemy (Soler and
Apidianaki, 2021), context-sensitivity (Reif et al.,
2019), social bias (May et al., 2019; Bommasani
et al., 2020), changes to the embedding space dur-
ing fine-tuning (Merchant et al., 2020), and as an
evaluation metric for text generation (Zhang et al.,
2020).

However, a number of works have questioned the
appropriateness of cosine similarity. Schnabel et al.
(2015) found that static embedding models encode
a substantial degree of word frequency information,
which leads to a frequency bias in cosine similar-
ity. May et al. (2019) questioned the adequacy of
cosine similarity in sentence encoders after finding
contextual discrepancies in bias measures. Perhaps
most relevant to the present work is Zhelezniak
et al. (2019) which treats individual word embed-

1Our code is publically released at: http://github.
com/wtimkey/rogue-dimensions

dings as statistical samples, shows the equivalence
of cosine similarity and Pearson correlation, and
notes that Pearson correlation (and therefore cosine
similarity) is highly sensitive to outlier dimensions.
They further suggest the use of non-parametric rank
correlation measures such as Spearman’s ρ , which
is robust to outliers. Our work investigates the sen-
sitivity of cosine similarity to outlier dimensions
in contextual models, and further characterizes the
behavioral correlates of these outliers.

Our goal in this work was not causal explanation
of degenerate embedding spaces or post-processing
for task performance gains, but rather to empiri-
cally motivate trivially simple transformations to
enable effective interpretability research with exist-
ing metrics. However, we refer interested readers to
Gao et al. (2019) who studied degeneration toward
anisotropy in machine translation. Similarly, Li
et al. (2020) suggested a learned transformation of
transformer embedding spaces which resulted in in-
creased performance on semantic textual similarity
tasks.

3 Rogue Dimensions and
Representational Geometry

3.1 Anisotropy

In this section, we investigate how each dimension
of the embedding space contributes to anisotropy,
defined by Ethayarajh (2019) as the expected co-
sine similarity of randomly sampled token pairs.
They showed that contextual embedding spaces
are highly anisotropic, meaning that the contextual
representations of any two tokens are expected to
be highly similar to one another. We investigate
this counterintuitive property by decomposing the
cosine similarity computation by dimension, and
show that the cosine similarity of any two tokens
is dominated by a small subset of rogue dimen-
sions. We conclude that anisotropy is not a global
property of the entire embedding space, but is in-
stead driven by a small number of idiosyncratic
dimensions.

3.1.1 Setup

Ethayarajh (2019) defines the anisotropy in layer `
of model f as the expected cosine similarity of any
pair of words in a corpus. This can be approximated
as Â( f`) from a sample S of n random token pairs
from a corpus O. S = {{x1,y1}, ...,{xn,yn}} ∼ O:

http://github.com/wtimkey/rogue-dimensions
http://github.com/wtimkey/rogue-dimensions


Â( f`) =
1
n
· ∑
{xα ,yα}∈S

cos( f`(xα), f`(yα)) (1)

The cosine similarity, between two vectors u and
v of dimensionality d is defined as

cos(u,v) =
u · v
‖u‖‖v‖

=
d

∑
i=1

uivi

‖u‖‖v‖
(2)

Expressing cosine similarity as a summation
over d dimensions, we can define a function
CCi(u,v) which gives contribution of dimension
i to the total cosine similarity of u and v as:

CCi(u,v) =
uivi

‖u‖‖v‖ (3)

From this, we define CC( f i
`), the contribution of

dimension i to Â( f`) as:

CC( f i
`) =

1
n
· ∑
{xα ,yα}∈S

CCi( f`(xα), f`(yα)) (4)

Note that ∑
d
i CC( f i

`) = Â( f`). From the mean co-
sine contribution by dimension, we can determine
how much each dimension contributes to the total
anisotropy. If CC( f 1

` ) ≈ CC( f 2
` ) ≈ ... ≈ CC( f d

` )
then we conclude that anisotropy is a global prop-
erty of the embedding space; no one dimension
drives the expected cosine similarity of any two em-
beddings. By contrast, if CC( f i

`)>> ∑
d
j 6=iCC( f j

` )
then we conclude that dimension i dominates the
cosine similarity computation.

3.1.2 Experiment
We compute the average cosine similarity contri-
bution, CC( f i

`), for each dimension in all layers of
BERT, RoBERTa, GPT-2, and XLNet.2 We then
normalize by the total expected cosine similarity
Â( f`) to get the proportion of the total expected
cosine similarity contributed by each dimension.
All models are of dimensionality d = 768 and have
12 layers, plus one static embedding layer. We also
include two 300 dimensional non-contextual mod-
els, Word2Vec3 and GloVe,4 for comparison. Our
corpus O is an 85k token sample of random arti-
cles from English Wikipedia. All input sequences

2All models from https://github.com/
huggingface/transformers

3https://zenodo.org/record/4421380
4https://nlp.stanford.edu/projects/

glove/ (Wikipedia+Gigaword 5, 300d)

Model Layer 1 2 3 Â( f`)
GPT-2 11 0.275 0.269 0.265 0.640

12 0.763 0.131 0.078 0.885
BERT 10 0.817 0.004 0.003 0.396

11 0.884 0.003 0.002 0.506
RoBERTa 7 0.726 0.193 0.032 0.705

12 0.663 0.262 0.020 0.745
XLNet 10 0.990 0.000 0.000 0.887

11 0.996 0.001 0.000 0.981
Word2Vec 0.031 0.023 0.023 0.130

GloVe 0.105 0.096 0.095 0.104

Table 1: Proportion of total expected cosine similarity,
CC( f i

`)/Â( f`), contributed by each of the top 3 dimen-
sions in the two most anisotropic layers of each model,
along with the anisotropy estimate Â( f`) for the given
layer. Results for all layers can be found in Table 4 of
the appendix.

consisted of 128 tokens. From the resulting rep-
resentations we take a random sample S of 500k
token pairs. For each model, we report the three
dimensions with the largest cosine contributions
in the two most anisotropic layers, as well as the
overall anisotropy Â( f`).

3.1.3 Results and Discussion

Results are summarized in Table 1. The static mod-
els Word2Vec and GloVe are relatively isotropic
and are not dominated by any single dimension.
Across all transformer models tested, a small sub-
set of rogue dimensions dominate the cosine
similarity computation, especially in the more
anisotropic final layers. Perhaps the most strik-
ing case is layers 10 and 11 of XLNet, where a
single dimension contributes more than 99% of
the expected cosine similarity between randomly
sampled tokens.

The dimensions which drive anisotropy are cen-
tered far from the origin relative to other dimen-
sions. For example, the top contributing dimension
in the final layer of XLNet (i = 667) has a mean
activation of E[x667

12 ] = 180.0, while the expected
activation of all other dimensions is E[xi 6=667

12 ] =

−0.084 with standard deviation σ [xi 6=667
12 ] = 0.77.

One implication of anisotropy is that the em-
beddings occupy a narrow cone in the embedding
space, as the angle between any two word em-
beddings is very small. However, if anisotropy
is driven by a single dimension (or a small subset
of dimensions), we can conclude that the cone lies
along a single axis or within a low dimensional sub-
space, rather than being a global property across

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://zenodo.org/record/4421380
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


all dimensions.5 We conclude from this analysis
that the anisotropy of the embedding space is an
artifact of cosine similarity’s high sensitivity to a
small set of outlier dimensions and is not a global
property of the space.6

3.2 Informativity of Similarity Measures
In the previous section, we found that anisotropy
is driven by a small subset of dimensions. In this
section, we investigate whether standard similarity
measures are still informed by the entire embedding
space, or if variability in the measure is also driven
by a small subset of dimensions.

For example, it could be the case that some di-
mension i has a large, but roughly constant activa-
tion across all tokens, meaning E[CC( f i

`)] will be
large, but Var[CC( f i

`)] will be near zero. In this
case, we would be adding a large constant to co-
sine similarity, making Anisotropy( f`) large but not
changing Var[cos( f`(x), f`(y)]. In this case, the av-
erage cosine similarity would be driven toward 1.0
by dimension i, but any changes in cosine similarity
would be driven by the rest of the embedding space,
not dimension i, meaning cosine similarity would
provide information about the entire representation
space, rather than a single dimension. Conversely,
dimension i may have mean activation near zero,
but extremely large variance across tokens. In this
case, dimension i would not appear to make the
space anisotropic, but would still drive variability
in cosine similarity. Ultimately, we’re not inter-
ested in where the representation space is centered,
but whether changes in a similarity measure reflect
changes in the entire embedding space.

In this section we uncover which dimensions
drive the variability of cosine similarity.7 Paral-
leling our findings in Section 3.1 we find that the
token pairs which are similar/dissimilar to one an-
other completely change when we remove just 1-5
dominant dimensions from the embedding space.

3.2.1 Setup
Let f`(x) : X −→ Rd , be the function which maps
a token x to its representation in layer l of model

5Our analysis complements that of Cai et al. (2021)
which used Principle Component Analysis to identify iso-
lated isotropic clusters as well as embedding cones in a space
reduced to three dimensions.

6We additionally replicated Ethayarajh (2019) before and
after removing rogue dimensions in Appendix A. We show
that their analyses are extremely sensitive to rogue dimensions.

7We conduct the same analysis using Euclidean distance
in Appendix B and reach similar conclusions as with cosine
similarity.

Model Layer k=1 k=3 k=5
GPT-2 0 0.999 0.996 0.996

11 0.967 0.352 0.352
12 0.819 0.232 0.232

BERT 0 0.999 0.997 0.997
11 0.046 0.048 0.048
12 0.213 0.214 0.214

RoBERTa 0 0.810 0.770 0.770
11 0.591 0.319 0.319
12 0.566 0.301 0.301

XLNet 0 0.999 0.996 0.996
11 0.124 0.150 0.150
12 0.028 0.024 0.024

Word2vec 0.998 0.993 0.988
GloVe 0.987 0.954 0.930

Table 2: Proportion of variance in cosine similarity r2

explained by cosine similarity when the top k dimen-
sions, measured by CC( f i

`), are removed. Layer 0 is
the static embedding layer. Results for all layers can be
found in Table 5 of the Appendix.

f . Let f ′`(x) : X −→ Rd−k be the function which
maps token x to its representation with top k dimen-
sions (measured by contribution to cosine similar-
ity) removed. Let C(S) = cos

x,y∈S
( f`(x), f`(y)) and

C′(S) = cos
x,y∈S

( f ′`(x), f ′`(y)). In this analysis, we

compute:

r =Corr[C(S),C′(S)] (5)

This is the Pearson correlation between the co-
sine similarities in the entire embedding space and
those similarities when k dimensions are removed.
In our analysis we report r2 which corresponds to
the proportion of variance in C(S) explained by
C′(S). For example, if we were to set k=1, and
the observed r2 is large, then cosine similarity in
the full embedding space is still well explained by
the remaining d− 1 dimensions. By contrast, if
r2 is small, then the variance of cosine similarity
in the embedding space can not be well explained
by the bottom d−1 dimensions, and thus a single
dimension drives variability in cosine similarity.

3.2.2 Experiment

For this experiment, we compute r2 =
Corr[C(x,y),C′(x,y)]2 for all layers of all
models, using the same set of token representations
as in Section 3.1. We remove the top k = {1,3,5}
dimensions, where dimensions are ranked by
CC( f i

`), the cosine similarity contribution of
dimension i in layer l. We report results for the
first layer and the final two layers. Results for all
layers can be found in Table 5 of the Appendix.



3.2.3 Results
Results are summarized in Table 2. We find that
in the static embedding models and the earlier lay-
ers of each contextual model, no single dimension
or subset of dimensions drives the variability in
cosine similarity. By contrast, in later layers, the
variability of cosine similarity is driven by just 1-5
dimensions. In the extreme cases of XLNet-12 and
BERT-11, when we remove just a single dimension
from the embedding space, almost none of the vari-
ance in cosine similarity can be explained by cosine
similarity in the d−1 dimensional subspace. (r2 =
0.028 and 0.046 respectively) This means that the
token pairs which are similar to one another in the
full embedding space are drastically different from
the pairs which are similar when just a handful of
dimensions are removed.

While similarity measures should reflect proper-
ties of the entire embedding space, we have shown
that this is not the case with cosine similarity in con-
textualized embedding spaces. Not only do a small
subset of dimensions in later layers drive the co-
sine similarity of randomly sampled words toward
1.0, but this subset also drives the variability of the
measure. This result effectively renders cosine
similarity a measure over 1-5 rogue dimensions
rather than the entire embedding space.

4 Rogue Dimensions and Model
Behavior

In this section, we address the question of whether
the dimensions which dominate cosine similarity
likewise dominate model behavior. Specifically, if
similarity measures are dominated by only a few
dimensions, as shown in the previous sections, then
those dimensions should be the only ones the model
actually uses, otherwise, the measures only reflect
a small subset of what the model is doing. We find
that dimensions which dominate cosine similarity
do not likewise dominate model behavior.

4.1 Behavioral Influence of Individual
Dimensions

We measure the influence of individual dimensions
on model behavior through an ablation study in the
style of Morcos et al. (2018).8 The idea of neuron

8There are several possible ways to assess the importance
of individual neurons on prediction. One popular technique is
Layerwise Relevance Propagation (Bach et al., 2015) which
has recently been used in Transformer-based models (Voita
et al., 2020). We use feature ablation due to its ease of imple-
mentation and generalizability across architectures.

ablation studies is to examine how the performance
of a network changes when a neuron is clamped
to a fixed value, typically zero. In our study, we
measure how much the language modeling distri-
bution changes when dimension i of layer ` is fixed
to zero.

4.2 Setup

Let Pf (s) be the original language modeling dis-
tribution of model f for some input s sampled
from corpus O . We measure how the distribu-
tion changes after ablation using KL divergence
between the ablated model distribution and the un-
altered reference distribution.9 We use KL diver-
gence, rather than typical measures of importance
in feature ablation such as accuracy or perplexity
because we are interested in how much the predic-
tion distributions change rather than performance
on some task. Our measure of the importance of
dimension i in layer ` of model f is the mean KL
divergence between the two distributions across our
corpus, where S is a set of n inputs to the model.

I(i, `, f ) =
1
n

n

∑
s∈S

DKL[Pf (s)‖Pf (s| f i
`(s) = 0)] (6)

4.3 Experiment

To measure the importance of each dimension to
model behavior, we compute I(i, `, f ) for the last 4
layers of each model over 10k distributions. Since
the autoregressive models (GPT-2, XLNet) give
a language modeling distribution over all tokens
in the input, we use a corpus of 10k tokens from
English Wikipedia. In the auto-encoder models
(BERT, RoBERTa), we mask 15% of tokens and
use a corpus of 150k tokens, for a total of 10k
language modeling distributions. We plot the rela-
tive behavioral influence of each dimension against
its contribution to cosine similarity, measured by
CC( f i

`), (each is normalized to sum to 1).

4.4 Results

Figure 1 displays the results for the final layer of
each model.10 In all models, we see that the di-
mensions which dominate cosine similarity do
not likewise dominate model behavior. The mis-
match is less drastic in BERT’s final layer, but

9We zero out dimensions by setting the appropriate layer
normalization parameters γ and β to zero.

10The plots for layers 9-11 can be found in Figure 7 in the
supplementary materials.



Figure 1: Relative contribution of each dimension to cosine similarity, CC( f i
`), (top) paired with its relative in-

fluence on model behavior, I(i, `, f ) (bottom). The top and bottom portions of the plots each have 768 bars, one
for each dimension in layer 12. The width of the bars corresponds to their relative contribution to each metric.
For example, three dimensions (yellow, red, light yellow) dominate cosine similarity in GPT-2, but when we trace
those dimensions to the bottom half of the plot, they appear to vanish, meaning their relative influence on model
behavior is negligible. While this mismatch is less pronounced for BERT, it is particularly extreme in XLNet,
where a single dimension dominates cosine similarity, but is effectively meaningless to the pretraining objective.

is quite severe in final XLNet and GPT-2, where
removing the dimensions which dominate cosine
similarity does not lead to substantial changes in
the language modeling distribution.

While ablating rogue dimensions often alters
the language modeling distribution more than ab-
lating non-rogue dimensions, we emphasize that
there is not a one-to-one correspondence between
a dimension’s influence on cosine similarity and
its influence on language modeling behavior. In
the case of XLNet and GPT-2, removing dimen-
sions which dominate cosine similarity leads to
only vanishingly small changes to the behavior of
the model.

4.5 Behavioral Correlates of Rogue
Dimensions

We now turn to the related question of whether
rogue dimensions actually capture linguistically
meaningful information. Because rogue dimen-
sions dominate representational similarity mea-
sures, these measures will be heavily biased toward
whatever information these dimensions capture. To
explore their behavioral correlates, we plotted the
distribution of the values for rogue dimensions.

We show in Figure 2 that rogue dimensions of-
ten have highly type/position specific activation
patterns. Rogue dimensions in all models are partic-
ularly sensitive to instances of the "." token and/or
position 0 of the input. For example, in laters 2-11
of GPT-2 and RoBERTa, the mean cosine similarity

of any two tokens in position 0 is greater than .99,
while the mean similarity of tokens not in position
0 is .623 and .564 respectively.

While the transformer language models we have
tested have all been shown to capture a rich range
of linguistic phenomena, this linguistic knowledge
may be obscured by rogue dimensions. The follow-
ing section empirically evaluates this hypothesis.

5 Postprocessing and Representational
Quality

While we have shown that the representational ge-
ometry of contextualized embeddings makes cosine
similarity uninformative, there are several simple
postprocessing methods which can correct for this.
In this section we outline three such methods: stan-
dardization, all-but-the-top (Mu and Viswanath,
2018), and ranking (via Spearman correlation).
We evaluate representational quality of the post-
processed embeddings on several word similar-
ity/relatedness datasets and show that the under-
lying representational quality is obscured by the
rogue dimensions. When we correct for rogue di-
mensions, correlation with human similarity judg-
ments improves across the board. We also find
that representational quality is preserved across all
layers, rather than giving way to degraded/task spe-
cific representations as argued in previous work.



Figure 2: Distribution of values in the dimension with the highest variance in layer 11 of each model across a
sample of 10k tokens from English Wikipedia. Each color corresponds to a specific type/position. The orange
distribution is tokens which occur in position zero, the blue distribution is instances of the "." token, and green is
instances of all other tokens. Results for all layers can be found in Figures 8 and 9 of the appendix.

5.1 Postprocessing
Standardization: We have observed that a small
subset of dimensions with means far from zero and
high variance completely dominate cosine similar-
ity. A straightforward way to adjust for this is to
subtract the mean vector and divide each dimension
by its standard deviation, such that each dimension
has µi = 0 and σi = 1. Concretely, given some cor-
pus of length |O| containing word representations
x ∈ Rd , we compute the mean vector µ ∈ Rd

µ =
1
|O|
· ∑

x∈O
x (7)

as well as the standard deviation in each dimen-
sion σ ∈ Rd

σ =

√
1
|O|
· ∑

x∈O
(x−µ)2 (8)

Our new standardized representation for each
word vector (z) becomes the z-score in each dimen-
sion.

z =
x−µ

σ
(9)

All-but-the-top: Following from similar obser-
vations (a nonzero common mean vector and a
small number of dominant directions) in static em-
bedding models, Mu and Viswanath (2018) pro-
posed subtracting the common mean vector and
eliminating the top few principle components (they
suggested the top d

100 ), which should capture the
variance of the rogue dimensions in the model11

and make the space more isotropic.
Spearman’s ρ: Zhelezniak et al. (2019) treat

word embeddings as d observations from an |O|-
variate distribution, and use Pearson correlation as

11See Cai et al. (2021) for further discussion of the top
principle components of contextual language models.

a measure of similarity. They propose the use of
non-parametric rank correlation coefficients, such
as Spearman’s ρ when embeddings depart from
normality. Spearman correlation is just Pearson
correlation but between the ranks of embeddings,
rather than their values. Thus Spearman correlation
can also be thought of as a postprocessing tech-
nique, where instead of standardizing the space
or removing the top components, we simply trans-
form embeddings as x′ = rank(x). Spearman’s ρ is
robust to outliers and thus will not be dominated
by the rogue dimensions of contextual language
models. Unlike standardization and all-but-the-
top, Spearman correlation requires no computa-
tions over the entire corpus. While rank-based
similarity measures will not be dominated by rogue
dimensions, rogue dimensions will tend to occupy
the top or bottom ranks.

5.2 Representational Quality

While we have shown that cosine similarity is
dominated by a small subset of dimensions, a re-
maining question is whether adjusting for these
dimensions makes similarity measures more in-
formative. In particular, we evaluate whether the
cosine similarities between word pairs align more
closely with human similarity judgments after post-
processing. We evaluate this using 4 word similar-
ity/relatedness judgment datasets: RG65 (Ruben-
stein and Goodenough, 1965), WS353 (Agirre
et al., 2009), SIMLEX999 (Hill et al., 2015) and
SIMVERB3500 (Gerz et al., 2016). Examples in
these datasets consist of a pair of words and a corre-
sponding similarity rating averaged over several hu-
man annotators. Because the similarity judgments
were designed to evaluate static embeddings, we
use the context-aggregation strategy of Bommasani



et al. (2020) to produce static representations.12

For each model, we report the Spearman
correlation between the model similarities and
human-similarity judgments, averaged across all
4 datasets.13 We report the correlation for cosine
similarities of the original embeddings, as well as
for postprocessed embeddings using four strategies:
standardization, all-but-the-top (removing the top
7 components), only subtracting the mean (the step
common to both strategies) and Spearman correla-
tion.

5.3 Results

Results are summarized in Figure 3. Our key find-
ings are:

Postprocessing aligns the embedding space
more closely to human similarity judgments
across almost all layers of all models. We found
that standardization was the most successful post-
processing method, showing consistent improve-
ment over the original embeddings in all but the
early layers of BERT.

All-but-the-top was generally effective, though
the resulting final layer of RoBERTa and GPT-2
exhibited poor correlation with human judgements,
similar to the original embeddings. In pilot analy-
ses, we found that all-but-the-top is highly depen-
dent on the number of components removed, a hy-
perparameter, D, which Mu and Viswanath (2018)
suggest should be d

100 . Just removing the first prin-
ciple component in RoBERTa yielded a stronger
correlation, but all-but-the top did not significantly
improve correlation with human judgements in the
final layer of GPT-2 for any choice of D.

Simply subtracting the mean vector also yielded
substantial gains in most models with the exception
of the final layers of GPT-2 and XLNet. The rogue
dimensions in the last layer of these two models
have exceptionally high variance. While subtract-
ing the mean made the space more isotropic as
measured by cosine similarity, it did not reduce the
variance of each dimension. We found, particularly
in the final layer of GPT-2 and XLNet that 1-3 di-
mensions drive the variability of cosine similarity,
and this was still the case when the mean vector

12We aggregate over between 200-500 single-sentence
contexts of each word type using sentences from English
Wikipedia. Words with an insufficient number of contexts
were omitted, leaving a total of 1,894 unique words and 4,577
unique pairs. We use mean pooling over subwords to get a
single representation for a word.

13Full results from each dataset can be seen in Figures 10,
11, 12, 13 of the Appendix.

was subtracted.
Converting embeddings into ranks (Spearman

correlation) also resulted in significantly stronger
correlations with human judgments in all layers of
all models, though the correlation was often weaker
than standardization or all-but-the-top.

Representational quality is preserved across
all layers. Previous work has suggested that the
final layers of transformer language models are
highly task-specific. Liu et al. (2019) showed that
the middle layers of BERT outperform the final
layers on language understanding tasks. Using a
cosine-similarity based text-generation evaluation
metric, Zhang et al. (2020) showed a sharp drop in
correlation to human judgements of machine trans-
lation quality in final layers of various transformer
language models. Similarly, Davis and van Schijn-
del (2020) used Representational Similarity Analy-
sis (RSA) with Pearson correlation14 and found that
intermediate layers of GPT-2 and TransformerXL
encode human-like implicit causality biases which
are subsequently obscured in final layers.

Our findings suggest that linguistic representa-
tional quality (in this case lexical semantics) is ac-
tually preserved in the final layers but is obscured
by a small handful of rogue dimensions. After
simple postprocessing, later layers of the model
correlate just as well, if not better than intermedi-
ate layers with human similarity judgments. This
finding reaffirms the need to carefully consider the
representational geometry of a model before draw-
ing conclusions about layerwise representational
quality, and the general linguistic knowledge these
models encode.

6 Discussion and Future Work

Perhaps the most important direction for future
work is designing and implementing language mod-
els which do not develop rogue dimensions in the
first place. Gao et al. (2019) introduce a cosine-
regularization term during pretraining which im-
proved the performance of transformer models on
machine translation. Perhaps BERT or GPT models
could similarly benefit from such regularization.

A prerequisite for designing models without
rogue dimensions is understanding how these di-
mensions arise over time. Contemporaneous work
from Biś et al. (2021) provides a useful characteri-
zation of how degenerate representations may be

14Zhelezniak et al. (2019) showed Pearson correlation to be
effectively equivalent to cosine similarity.



Figure 3: Average correlation (Spearman’s ρ) with human judgments in the four word similarity datasets, with and
without postprocessing.

learned, which largely focuses on token frequency,
while Kovaleva et al. (2021) provide a characteri-
zation of how outliers impact model performance,
attributing much of the problem to scaling factors in
layer normalization, and Luo et al. (2021) make ob-
servations about the contribution of positional em-
beddings. In the present work, we observe strong
correlations with specific tokens and positions. Uni-
fying these accounts is an important task for future
work. With the recent release of the MultiBERT
checkpoints (Sellam et al., 2021), future work can
uncover whether rogue dimensions are a coinci-
dental property of some models, or whether they
are a requisite for good performance. The Multi-
BERTs may also elucidate how these dimensions
emerge during pretraining. While we empirically
motivate a trivially simple transformation which
corrects for rogue dimensions, we believe the most
fruitful direction for future work is to build models
whose representations require no post-hoc transfor-
mations. This would result in more interpretable
embedding spaces and may additionally lead to
models with better performance.

7 Conclusion

In this work, we showed that similarity measures
in contextual language models are largely reflec-
tive of a small number of rogue dimensions, not
the entire embedding space. Consequently, a few
dimensions can drastically change the conclusions
we draw about the linguistic phenomena a model
actually captures. We showed that the previously
observed anisotropy in contextual models is essen-
tially an artifact of rogue dimensions and is not a
global property of the entire embedding space. We
also showed that variability in similarity is driven
by just 1-5 dimensions of the embedding space. In

many cases, removing just a single dimension com-
pletely changed which token pairs were similar to
one another. However, we found that model behav-
ior was not driven by these rogue dimensions, and
that these dimensions seem to handle a small subset
of a model’s linguistic abilities, such as punctua-
tion and positional information. In summary, stan-
dard similarity measures such as cosine similarity
and Euclidean distance are not informative mea-
sures of how contextual language models represent
and process language. We argue that measures of
similarity in contextual language models must ac-
count for rogue dimensions using techniques such
as standardization. These techniques should not
just be viewed as avenues to improve downstream
performance, but as prerequisites for any analysis
involving representational similarity.
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A Removing Dominant Dimensions and
Representational Geometry

To facilitate a direct comparison with anisotropy
estimates of Ethayarajh (2019), we replicate the
experiments of Section 4 before and after remov-
ing the top k dimensions with the largest E[CCi].
For these experiments we chose k=5 dimensions
to remove. Results for anisotropy estimates are
shown in Figure 4. Three key takeaways from this
analysis are:

All models tested had highly anisotropic rep-
resentations, including XLNet and RoBERTa
which had not been evlauated in previous work.
XLNet is even more anistropic than GPT-2 in its
final two layers. RoBERTa’s word representations
are likewise highly anisotropic, though starting in
earlier layers than in XLNet and BERT.

After removing just 5 dimensions, embed-
dings become relatively isotropic, with Â( f`)
never larger than 0.25 in any layer of any model.

Anisotropy becomes consistent across models
and across layers, suggesting that the deviant di-
mensions that drive anisotropy are idiosyncratic

and model/layer specific; we show this to indeed
be the case in Section 4. By contrast, the geometry
of the embedding space without rogue dimensions
show similar properties across models/layers, sug-
gesting that the similar qualities of the representa-
tional geometries of each model are obscured by
these rogue dimensions.

This can additionally be seen in our replication
of the intra-sentence similarity and self-similarity
from Ethayarajh (2019). While they find extreme
cases in which words of the same type are no
more similar to one another than randomly sam-
pled words, we find a consistently high degree of
self-similarity across all layers of all models after
removing 5 dimensions. This suggests that infor-
mation about word identity is preserved across all
layers, rather than giving way to extremely con-
textualized representations in the final layer, this
concurs with our findings in Section 5. Together,
these show that our conclusions about the geom-
etry of contextual embedding spaces are heavily
skewed by the sensitivity of cosine similarity to
rogue dimensions present in each of these models.

B Informativity of Euclidean Distance

In this section, we conduct a similar analysis to
Section 3.2 to see whether the variability in Eu-
clidean distances between pairs of embeddings can
be explained by Euclidean distance with the top
k dimensions are removed. Our methods for this
analysis are identical to those of Section 3.2, ex-
cept our criterion for choosing k is the variance
in each dimension. Results are shown in Table 3.
In the extreme case of XLNet, none of the vari-
ability in Euclidean distances can be explained by
Euclidean distances when a single dimension is re-
moved. This means that Euclidean distance in this
layer is effectively a measure of a single dimension.
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Figure 4: Anisotropy by layer of the full embedding space (left) and with the top 5 dimensions removed, as
measured by E[CCi] (right). In all models, anisotropy drastically decreases, and becomes more consistent across
models and layers.

Figure 5: Intra-sentence similarity by layer of the full embedding space (left) and with the top 5 dimensions
removed, as measured by E[CCi] (right). Intra-sentence similarity is much more consistent and monotonically
increasing when the top 5 dimensions are removed.

Figure 6: Average self-similarity (similarity of the same word type across contexts) by layer of the full embedding
space (left) and with the top 5 dimensions removed, as measured by E[CCi] (right). In the full embedding space,
words of the same type in GPT-2 and XLNet appear no more similar to one another than randomly-sampled tokens.
When we remove just 5 dimensions, words of the same type are indeed more similar to one another than the random
baseline.



Figure 7: Relative contribution of each dimension to cosine similarity (top) paired with its relative influence on
model behavior (bottom) for layers 9-11 of each model.



Figure 8: Distribution of activations in the dimension with highest variance in layers 0-6 of each model across a
sample of 10k tokens. Each color corresponds to a specific type/position, where the orange distribution is tokens
occurring in position zero, the blue distribution is instances of the "." token, and green is all other tokens. In many
cases, there are two clear modes in each distribution, where one corresponds to a specific word type or position.
Additionally, this behavior tends to persist within the same dimension number across layers, which is facilitated
by the residual connections present in each model.



Figure 9: Distribution of activations in the dimension with highest variance in layers 7-12 of each model across a
sample of 10k tokens. Each color corresponds to a specific type/position, where the orange distribution is tokens
occurring in position zero, the blue distribution is instances of the "." token, and green is all other tokens. In many
cases, there are two clear modes in each distribution, where one corresponds to a specific word type or position.
Additionally, this behavior tends to persist within the same dimension number across layers, which is facilitated
by the residual connections present in each model.



Figure 10: Average correlation (Spearman’s ρ) with human judgements on each word similarity dataset, with and
without postprocessing for GPT-2

Figure 11: Average correlation (Spearman’s ρ) with human judgements on each word similarity dataset, with and
without postprocessing for BERT

Figure 12: Average correlation (Spearman’s ρ) with human judgements on each word similarity dataset, with and
without postprocessing for RoBERTa



Figure 13: Average correlation (Spearman’s ρ) with human judgements on each word similarity dataset, with and
without postprocessing for XLNet



Model Layer k=1 k=3 k=5
GPT-2 0 0.999 0.996 0.996

1 0.983 0.975 0.975
2 0.999 0.783 0.783
3 0.992 0.257 0.257
4 0.993 0.200 0.200
5 0.993 0.159 0.159
6 0.993 0.090 0.090
7 0.992 0.037 0.037
8 0.990 0.007 0.007
9 0.990 0.002 0.002
10 0.986 0.022 0.022
11 0.971 0.974 0.974
12 0.909 0.333 0.333

BERT 0 0.997 0.997 0.997
1 0.994 0.993 0.993
2 0.993 0.992 0.992
3 0.994 0.993 0.993
4 0.988 0.987 0.987
5 0.992 0.991 0.991
6 0.988 0.987 0.987
7 0.982 0.981 0.981
8 0.969 0.968 0.968
9 0.925 0.924 0.924
10 0.762 0.761 0.761
11 0.434 0.433 0.433
12 0.990 0.989 0.989

RoBERTa 0 0.810 0.770 0.770
1 0.509 0.264 0.264
2 0.584 0.141 0.141
3 0.607 0.152 0.152
4 0.657 0.200 0.200
5 0.623 0.225 0.225
6 0.641 0.242 0.242
7 0.614 0.241 0.241
8 0.578 0.235 0.235
9 0.591 0.270 0.270
10 0.575 0.281 0.281
11 0.591 0.319 0.319
12 0.566 0.301 0.301

XLNet 0 0.999 0.996 0.996
1 1.000 1.000 1.000
2 1.000 0.987 0.987
3 0.993 0.992 0.992
4 0.983 0.978 0.978
5 0.903 0.896 0.896
6 0.481 0.470 0.470
7 0.432 0.426 0.426
8 0.235 0.236 0.236
9 0.321 0.323 0.323
10 0.308 0.307 0.307
11 0.124 0.150 0.150
12 0.028 0.024 0.024

Table 3: Proportion of variance in Euclidean distance
r2 explained by Euclidean distance when the top k di-
mensions (measured by the variance in each dimension)
are removed.

Model Layer 1 2 3 Â( f`)
GPT-2 0 0.054 0.051 0.051 0.484

1 0.324 0.163 0.150 0.626
2 0.319 0.205 0.149 0.612
3 0.294 0.264 0.145 0.589
4 0.297 0.275 0.151 0.549
5 0.324 0.258 0.150 0.517
6 0.351 0.237 0.148 0.485
7 0.374 0.205 0.144 0.466
8 0.376 0.156 0.141 0.461
9 0.364 0.190 0.157 0.466
10 0.326 0.257 0.207 0.498
11 0.275 0.269 0.265 0.640
12 0.763 0.131 0.078 0.885

BERT 0 0.159 0.076 0.035 0.066
1 0.541 0.049 0.024 0.154
2 0.790 0.006 0.005 0.224
3 0.792 0.006 0.004 0.234
4 0.781 0.007 0.005 0.283
5 0.809 0.007 0.005 0.360
6 0.792 0.005 0.004 0.382
7 0.716 0.006 0.005 0.342
8 0.668 0.006 0.006 0.326
9 0.743 0.004 0.004 0.380
10 0.817 0.004 0.003 0.396
11 0.884 0.003 0.002 0.506
12 0.686 0.005 0.005 0.370

RoBERTa 0 0.726 0.040 0.021 0.143
1 0.850 0.081 0.009 0.442
2 0.862 0.093 0.013 0.627
3 0.841 0.113 0.017 0.659
4 0.796 0.146 0.023 0.666
5 0.775 0.160 0.025 0.672
6 0.745 0.180 0.030 0.679
7 0.726 0.193 0.032 0.705
8 0.674 0.229 0.038 0.690
9 0.648 0.254 0.040 0.675
10 0.698 0.223 0.032 0.689
11 0.666 0.252 0.031 0.696
12 0.663 0.262 0.020 0.745

XLNet 0 0.300 0.043 0.028 0.037
1 0.085 0.059 0.036 0.022
2 0.042 0.031 0.016 0.050
3 0.157 0.013 0.011 0.051
4 0.413 0.017 0.009 0.169
5 0.700 0.005 0.004 0.177
6 0.908 0.003 0.002 0.514
7 0.942 0.001 0.001 0.563
8 0.982 0.000 0.000 0.826
9 0.984 0.000 0.000 0.833
10 0.990 0.000 0.000 0.887
11 0.996 0.001 0.000 0.981
12 0.973 0.003 0.002 0.884

Table 4: Proportion of total expected cosine similar-
ity, CC( f i

`)/Â( f`), contributed by each of the top 3 di-
mensions for all layers of each model, along with the
anisotropy estimate Â( f`) for the given layer.



Model Layer k=1 k=3 k=5
GPT-2 0 0.999 0.996 0.996

1 0.985 0.888 0.888
2 0.990 0.899 0.899
3 0.991 0.849 0.849
4 0.910 0.775 0.775
5 0.872 0.719 0.719
6 0.853 0.684 0.684
7 0.862 0.713 0.713
8 0.894 0.797 0.797
9 0.921 0.490 0.490
10 0.947 0.428 0.428
11 0.967 0.352 0.352
12 0.819 0.232 0.232

BERT 0 0.999 0.997 0.997
1 0.894 0.848 0.848
2 0.580 0.568 0.568
3 0.514 0.504 0.504
4 0.459 0.449 0.449
5 0.383 0.374 0.374
6 0.343 0.338 0.338
7 0.391 0.394 0.394
8 0.400 0.398 0.398
9 0.219 0.220 0.220
10 0.119 0.123 0.123
11 0.046 0.048 0.048
12 0.213 0.214 0.214

RoBERTa 0 0.810 0.770 0.770
1 0.509 0.264 0.264
2 0.584 0.141 0.141
3 0.607 0.152 0.152
4 0.657 0.200 0.200
5 0.623 0.225 0.225
6 0.641 0.242 0.242
7 0.614 0.241 0.241
8 0.578 0.235 0.235
9 0.591 0.270 0.270
10 0.575 0.281 0.281
11 0.591 0.319 0.319
12 0.566 0.301 0.301

XLNet 0 0.999 0.996 0.996
1 1.000 1.000 1.000
2 1.000 0.987 0.987
3 0.993 0.992 0.992
4 0.983 0.978 0.978
5 0.903 0.896 0.896
6 0.481 0.470 0.470
7 0.432 0.426 0.426
8 0.235 0.236 0.236
9 0.321 0.323 0.323
10 0.308 0.307 0.307
11 0.124 0.150 0.150
12 0.028 0.024 0.024

Table 5: Proportion of variance in cosine similarity r2

explained by cosine similarity when the top k dimen-
sions (measured by cosine similarity contribution) are
removed. Layer 0 is the static embedding layer.


